Amt der Tiroler Landesregierung Waldschutz – Luftgüte

März 2009

Auftraggeber: Der Landeshauptmann für den Vollzug von Bundesgesetzen,

Die Landesregierung für den Vollzug von Landesgesetzen,

vertreten durch das Amt der Tiroler Landesregierung,

Abteilung Waldschutz - Luftgüte, Tel.: 0512/508/DW 4611

6020 Innsbruck, Bürgerstrasse 36

Abteilung Umweltschutz, Tel.: 0512/508/DW 3452

Ausstellungsdatum: 29. Juni 2009

Für die Abteilung Waldschutz – Luftgüte:

Dr. Weber Andreas

Weitere Informationsangebote:

⇒	Teletext des ORF	Seite 782, 783
⇒	Homepage des Landes Tirol im Internet	www.tirol.gv.at/luft

Hinweis: Die Verwendung einzelner Daten ohne Berücksichtigung aller relevanten Messergebnisse kann zu einer Verfälschung der Aussage führen. Eine auszugsweise Vervielfältigung des Luftgüteberichtes ist daher ohne schriftliche Genehmigung der Abteilung Waldschutz/Fachbereich Luftgüte nicht gestattet. Alle erhobenen Luftgütedaten sind kontrolliert und wurden entsprechend den österreichischen Qualitätsanforderungen erfasst. Zur Beurteilung der Messergebnisse wurden auch Wetterdaten der Zentralanstalt für Meteorologie und Geodynamik herangezogen.

Inhaltsverzeichnis

Eriauterung über die Bedeutung der verwendeten Symbole	3
Lage der Messstationen und Bestückungsliste	4
Kurzübersicht über die Einhaltung von Grenzwerten	5
Kurzbericht	6
Stationsvergleich	7
Monatsauswertung der Stationen	
Höfen – Lärchbichl	10
Heiterwang – Ort / B179	12
Imst – Imsterau	
Imst – A12	18
Karwendel West	21
Innsbruck – Andechsstrasse (Reichenau)	23
Innsbruck – Fallmerayerstrasse (Zentrum)	26
Innsbruck – Sadrach	30
Nordkette	32
Mutters – Gärberbach A13	35
Hall in Tirol – Sportplatz	38
Vomp – Raststätte A12	41
Vomp – An der Leiten	44
Zillertaler Alpen	47
Brixlegg – Innweg	49
Kramsach – Angerberg	52
Kundl – A12	55
Wörgl – Stelzhamerstrasse	58
Kufstein – Praxmarerstrasse	61
Kufstein – Festung	64
Lienz – Amlacherkreuzung	
Lienz – Sportzentrum	
Beurteilungsunterlagen	
aus Gesetzen, Verordnungen und Richtlinien	72
IC I Überenber Herren	
IG-L Überschreitungen Auflistung der Überschreitungen nach IG-L	7.4
Authstung der Oberschleitungen nach IG-L	

Erläuterungen über die Bedeutung der verwendeten Symbole

SO2 Schwefeldioxid

PM2.5 grav. Feinstaub gemäß IG-L (High Volume Sampler und PM2.5 Kopf gesammelte

Tagesproben; durch konditionierte Wägung ermittelter Wert.)

PM10 grav. Feinstaub gemäß IG-L (High Volume Sampler und PM10 Kopf gesammelte

Tagesproben; durch konditionierte Wägung ermittelter Wert.)

PM10 kont. Feinstaub gemäß IG-L (Mittels kontinuierlich registrierender Staubmonitore und

PM10 Kopf gemessene Werte, multipliziert mit dem Defaultfaktor 1,3 oder einem

Standortfaktor, wenn dieser vorhanden ist.)

NO Stickstoffmonoxid NO2 Stickstoffdioxid

O3 Ozon

CO Kohlenmonoxid

HMW Halbstundenmittelwert

max HMW / HMW_MAX maximaler Halbstundenmittelwert max 1-MW / MW1_MAX Maximaler Einstundenmittelwert

max 01-M / MW_01_MAX Maximaler Einstundenmittelwert (stündlich gleitend)

max 3-MW Maximaler Dreistundenmittelwert
max 8-MW / MW8 MAX Maximaler Achtstundenmittelwert

max 08-M / MW_08_MAX Maximaler Achtstundenmittelwert (gleitend aus Einstundenmittelwerten)

TMW / max. TMW Tagesmittelwert / Maximaler Tagesmittelwert

MMW Monatsmittelwert

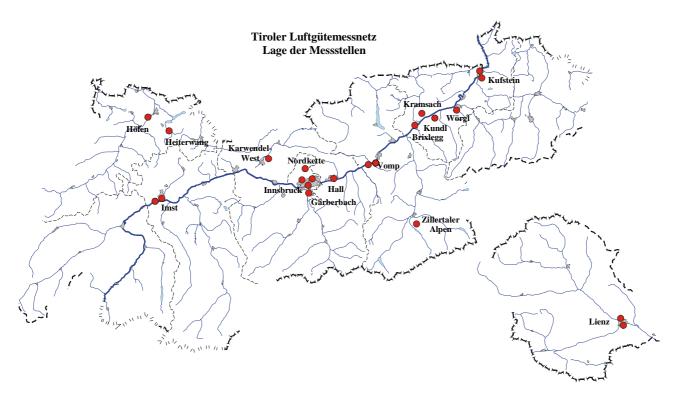
Gl.JMW Gleitender Jahresmittelwert

Keine Berechnung eines Tagesmittelwertes, da weniger

als 40 Halbstundenmittelwerte vorhanden (lt. ÖNORM 5866)

 mg/m^3 Milligramm pro Kubikmeter $\mu g/m^3$ Mikrogramm pro Kubikmeter

% Prozent = Anzahl Teile in hundert Teilen
% Promille = Anzahl Teile in tausend Teilen


VDI Verein Deutscher Ingenieure

ÖAW Österreichische Akademie der Wissenschaften

EU Europäische Union

IG-L Immissionsschutzgesetz Luft (BGBl. 115/97 i.d.g.F.)

n.a. nicht ausgewertet

BESTÜCKUNGSLISTE													
STATIONSBEZEICHNUNG	SEEHÖHE	SO2	PM10/PM2.5 ¹⁾	NO	NO2	О3	СО						
Höfen – Lärchbichl	877 m	-	-/-	-	-	•	-						
Heiterwang – Ort / B179	985 m	-	•/-	•	•	-	-						
Imst – Imsterau	717 m	-	•/-	•	•	-	-						
Imst – A12	719 m	-	•/-	•	•	-	-						
Karwendel – West	1749 m	-	-/-	-	-	•	-						
Innsbruck – Andechsstrasse	570 m	-	•/-	•	•	•	-						
Innsbruck – Fallmerayerstrasse	577 m	•	•/•	•	•	-	•						
Innsbruck - Sadrach	678 m	-	-/-	-	-	•	-						
Nordkette	1958 m	-	-/-	•	•	•	-						
Mutters – Gärberbach A13	688 m	-	•/-	•	•	-	-						
Hall in Tirol – Sportplatz	558 m	-	•/-	•	•	-	-						
Vomp – Raststätte A12	557 m	-	•/-	•	•	-	-						
Vomp – An der Leiten	543 m	-	•/-	•	•	-	-						
Zillertaler Alpen	1955 m	-	-/-	-	-	•	-						
Brixlegg – Innweg	519 m	•	•/-	-	-	-	-						
Kramsach – Angerberg	602 m	-	•/-	•	•	•	-						
Kundl – A12	507 m	-	-/-	•	•	-	-						
Wörgl – Stelzhamerstrasse	508 m	-	•/-	•	•	-	-						
Kufstein – Praxmarerstrasse	498 m	•	•/-	•	•	-	-						
Kufstein – Festung	550 m	-	-/-	-	-	•	-						
Lienz – Amlacherkreuzung	675 m	•	•/-	•	•	-	•						
Lienz – Sportzentrum	677 m	-	-/-	-	-	•	-						

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Kurzübersicht über die Einhaltung von Alarm-, Grenz- und Zielwerten März 2009

Bezeichnung der Messstelle	SO2	PM10 ²⁾	NO	NO2 1)	03	CO
HÖFEN					P	
Lärchbichl					M	
HEITERWANG				Ö		
Ort / B179						
IMST				Ö		
Imsterau						
IMST				Ö		
A12						
KARWENDEL					P	
West					M	
INNSBRUCK				Ö	P	
Andechsstrasse				Ö		
INNSBRUCK				U		
Fallmeraverstrasse INNSBRUCK					P	
INNSBRUCK Sadrach					M	
NORDKETTE					P	
NORDRETTE					M	
MUTTERS				Ö		
Gärberbach A13						
HALL IN TIROL				Ö		
Sportplatz						
VOMP				IZ Ö		
Raststätte A12				M		
VOMP				Ö		
An der Leiten						
ZILLERTALER					Z P	
ALPEN					M	
BRIXLEGG						
Innweg						
KRAMSACH				Ö	P M	
Angerberg				IZ Ö	IVI	
KUNDL				M		
A12 WÖRGL				Ö		
WORGL Stelzhamerstrasse						
KUFSTEIN				Ö		
Praxmarerstrasse						
KUFSTEIN					P	
Festung					-	
LIENZ		IP		IZ Ö		
Amlacherkreuzung				M		
LIENZ					P	
Sportzentrum					М	

	Grenzwerte und Zielwerte der nachstehenden Beurteilungsgrundlagen eingehalten
M	ÖAW: Überschreitung der Immissionsgrenzkonzentration für den Menschen bei Stickstoff-, Schwefeldioxid und Ozon
P	ÖAW: Überschreitung der Immissionsgrenzkonzentration für die Vegetation bei Ozon
Ö	ÖAW: Überschreitung der Immissionsgrenzkonzentration für Ökosysteme bei Stickstoffdioxid
V	Überschreitung der Grenzwerte nach VDI-Richtlinie 2310
F	Überschreitung der Grenzwerte der 2. VO gegen forstschädliche Luftverunreinigungen
IZ	Überschreitung von Zielwerten für Stickstoffdioxid oder Schwefeldioxid (BGBl. II Nr. 298/2001) sowie Zielwert zum Schutz von
1Z	Ökosystemen und Pflanzen (gilt nur für die Messstellen Nordkette und Kramsach/Angerberg).
	Überschreitung des im IG-L genannten Tages ziel wertes von 50µg/m³ für PM10. Der PM10-Tages grenz wert gem.
IP	Immissionsschutzgesetz Luft ist eine Perzentilregelung – pro Kalenderjahr sind derzeit bis zu 30 Überschreitungen erlaubt –
	Überschreitungen des Grenzwertes sind daher im Monatsbericht nicht auszuweisen.
Z	Überschreitung des langfristigen Zieles zur menschlichen Gesundheit für Ozon (gilt ab 2010)
	Überschreitung von Grenzwerten für Schwefeldioxid, Stickstoffdioxid oder Kohlenmonoxid gem. Immissionsschutzgesetz Luft
IG	(BGBl. 62/2001) zum Schutz der menschlichen Gesundheit bzw. Überschreitung der Informationsschwelle gemäß Ozongesetz.
	Überschreitung von Alarmwerten für Schwefeldioxid bzw. Stickstoffdioxid gemäss IG-L bzw. der Alarmschwelle gemäss
	Ozongesetz
1)	Der Jahresmittelwert wird in der Kurzübersicht nicht beurteilt
2)	An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12,
۷)	Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 gravimetrisch gemessen
	Schadstoff wird nicht gemessen

Kurzbericht für den März 2009

Messnetz

Das Land Tirol betreibt gemäß Immissionsschutzgesetz Luft (IG-L; BGBl. I 115/1997), dem Ozongesetz (BGBl. 210/1992) sowie der Messkonzeptverordnung zum Immissionsschutzgesetz Luft (BGBl. II 358/1998) – jeweils in den geltenden Fassungen - ein Luftgütemessnetz mit insgesamt 22 Messstationen. Zudem werden die Vorgaben gem. 2. Verordnung gegen forstschädliche Luftverunreinigungen (BGBl. II 199/1984) mit vollzogen.

Dieser Bericht enthält Informationen über die gemessenen Luftschadstoffe Kohlenmonoxid (CO), Schwefeldioxid (SO2), Stickoxide (NO und NO2) und Ozon (O3) sowie für Feinstaub (PM10 und PM2,5) über die Verfügbarkeit der Messdaten, und bezieht die Ergebnisse auf die in o.a. enthaltenen gesetzlichen Grenz- und Zielwerte österreichischer Gesetze sowie auf anerkannte wirkungsbezogene Immissionsgrenzkonzentrationen laut ÖAW. Die Ergebnisse von Blei/Arsen/Nickel/Cadmium und BaP (Benzo-a-Pyren) im PM10, von Benzol sowie von Staubniederschlagsmessungen sind in den Jahresberichten veröffentlicht, da für diese Schadstoffe lediglich Grenz- bzw. Zielwerte auf Jahresmittelwertbasis zu prüfen sind.

Klimaübersicht – Zentralanstalt für Meteorologie und Geodynamik, Regionalstelle für Tirol und Vorarlberg:

Der März präsentierte sich durchaus noch winterlich. Im Monatsmittel entsprachen die Temperaturen nur an wenigen Stationen dem Soll, zumeist war es rund 1 Grad zu kalt. Eine milde Phase gab es vor allem zu Monatsbeginn, während es einige Kaltlufteinbrüche in der letzten Monatsdekade noch einmal bis in tiefe Lagen schneien ließen. Die höchste Temperatur wurde am 28.3. in Jenbach mit 18,4 Grad gemessen, die tiefste nur wenige Tage davor in Tannheim mit -17,7 Grad.

Nur in wenigen Regionen des Oberlandes war es etwas zu trocken, zumeist fiel mehr Niederschlag als normal. Etwa die doppelten Mengen als gewöhnlich kamen im Raum Kufstein-Kössen-St. Johann und im südlichen Osttirol zusammen.

Trotz der tiefen Lage kam somit in Kössen noch einmal 144 cm Neuschnee dazu, in Innsbruck – auf nahezu gleicher Seehöhe - schneite es im Vergleich dazu nur 10 cm. Ähnliche Mengen wie in Kössen waren es in Achenkirch (131 cm) und Seefeld (153 cm), in St. Anton waren es "nur" 116 cm, was aber – ebenso wie in Seefeld – etwa dem Zweifachen eines durchschnittlichen Märzes entspricht. Die Gesamtschneehöhe wuchs in höheren Tallagen somit für einige Tage noch einmal über 1 m an.

Besonders windig war es in der Landeshauptstadt. Noch häufiger als der Südföhn waren aber die West- und Nordföhnfälle mit Sturmböen. Insgesamt war dies an 9 Tagen der Fall.

Während in Osttirol die Sonne ihr Kontingent ziemlich genau erfüllte, ließ sie in Nordtirol aus. In Innsbruck wurden 116 Stunden verzeichnet, fast 40 Stunden weniger als im langjährigen Märzschnitt und so wenig wie seit 1988 nicht mehr in einem März.

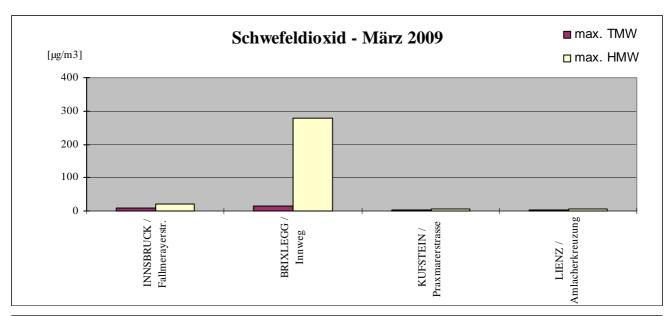
Luftschadstoffübersicht

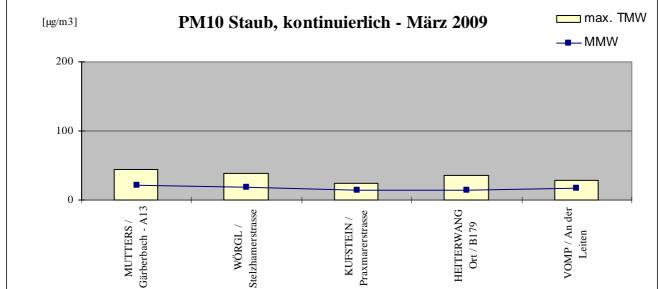
Obwohl sich der März winterlich gestaltete, war gegenüber Jänner und Feber eine weitere Verbesserung der Luftqualität festzustellen. Begünstigt wurde dies durch die zahlreichen Strömungswetterlagen, welche mit reichlicher Frischluftzufuhr einhergingen.

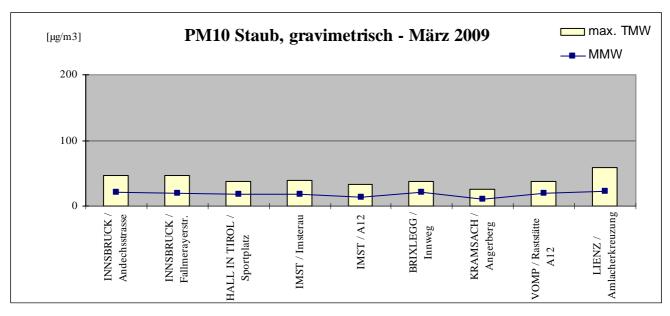
Bei **Schwefeldioxid** weisen die Monatsmittelwerte an allen 4 Messstellen ein geringes Belastungsniveau auf. Ähnlich ist die Situation bei den Tagesmittelwerten. Der höchste gemessene Tagesmittelwert an der Messstelle BRIXLEGG/Innweg liegt mit $15~\mu g/m^3$ zwar deutlich über den höchsten Werten der restlichen Messstandorte $(3-9~\mu g/m^3)$, der Grenzwert wurde aber eingehalten. Jedoch wurde mit einem Halbstundenmittelwert von $280~\mu g/m^3$ an der Messstelle BRIXLEGG/Innweg der Grenzwert nach dem IG-L (=Immissionsschutzgesetz-Luft) deutlich überschritten. Für eine Ausweisung einer Grenzwertüberschreitung im Sinne des IG-L müssen aber mindestens 3 Halbstundenmittelwerte pro Kalendertag überschritten sein. Dieses Kriterium wurde eingehalten.

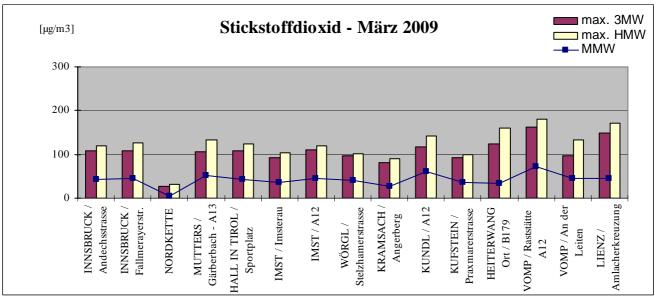
Bei der Feinstaubkomponente **PM10** wurde in Lienz an zwei Tagen der geltende Grenzwert von $50\,\mu\text{g/m}^3$ als Tagesmittelwert überschritten. Damit bilanziert die Messstelle LIENZ/Amlacherkreuzung nach dem ersten Quartal des Jahres mit 24 Grenzwertüberschreitungen vor der Messstelle INNSBRUCK/Andechsstraße mit 19 – gemäß IG-L sind im Jahr 2009 30 Überschreitungen zulässig.

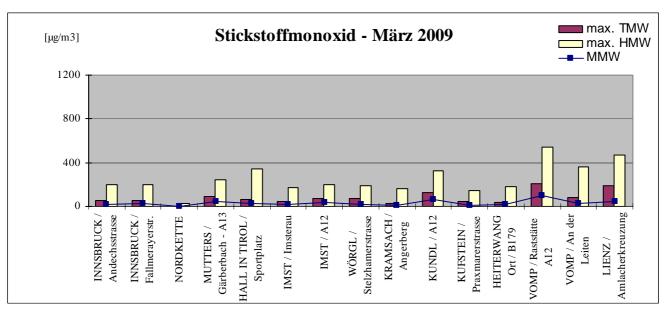
Bei **Stickstoffmonoxid** wurde an der Messstelle VOMP/Raststätte A12 mit deutlichen Abstand auf die anderen Messstandorte der höchste Monatsmittelwert mit $103~\mu g/m^3$ gemessen. Die höchsten Kurzzeitbelastungen wurden ebenfalls an der Messstelle VOMP/Raststätte A12 verzeichnet, die Grenzwerte laut VDI-Richtlinie ($1000~\mu g/m^3$ als Halbstundenmittelwert; $500~\mu g/m^3$ als Tagesmittelwert) wurden jedoch deutlich unterschritten.

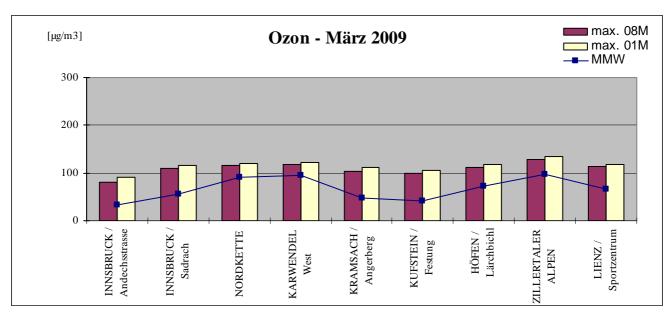

Auch bei **Stickstoffdioxid** ergeben sich die höchsten Kurzzeitwerte für die Messstelle VOMP/Raststätte A12 knapp vor der Messstelle LIENZ/Amlacherkreuzung. Die zuvor genannten Messstellen sowie die Messstelle KUNDL/A12 waren die einzigen Messstellen im Messnetz, an denen Zielwertüberschreitungen (80 μg/m³ als Tagesmittelwert gemäß IG-L) festgestellt wurden. Grenzwertüberschreitungen gemäß IG-L gab es im Berichtsmonat keine, jedoch ist für die

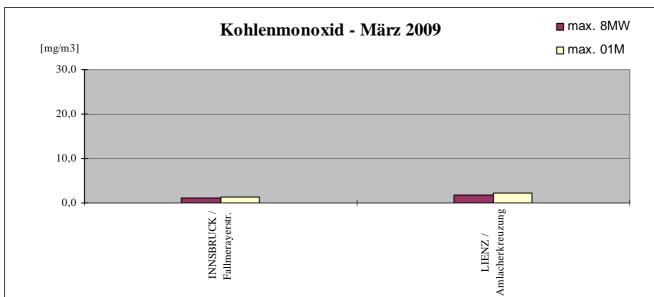

vegetationsbezogene Messstelle KRAMSACH/Angerberg eine Überschreitung der wirkungsbezogenen Immissionsgrenzkonzentration zum Schutz der Ökosysteme laut ÖAW (=Österreichische Akademie der Wissenschaften) auszuweisen.


Die **Ozon**messungen zeigen gegenüber dem Vormonat nunmehr eine höhere Belastung. Die Immissionskonzentrationen überschreiten die Grenzwertvorgaben nach der ÖAW (Österreichische Akademie der Wissenschaften) in Bezug auf die Vegetation an allen Messstellen und in Bezug auf den Schutz des Menschen an 7 Messorten. Zudem gab es an der hochalpinen Messstelle ZILLERTALER ALPEN eine Überschreitung des langfristigen Zielwertes ($120 \,\mu\text{g/m}^3$ als Achtstundenmittelwert gemäß Ozongesetz) zum Schutz der menschlichen Gesundheit, der ab 2010 einzuhalten ist.


Bei der Schadstoffkomponente Kohlenmonoxid wurden die festgesetzten Grenzwerte an den beiden Messstellen deutlich unterschritten.

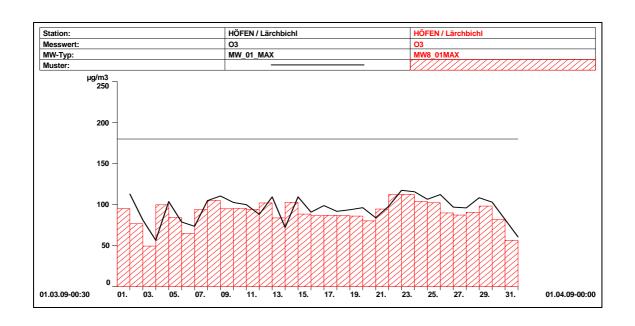

Stationsvergleich





Messstelle: HÖFEN / Lärchbichl

	SC)2	PM10	PM10	NO		NO2	_			03				CO	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
So 01.									95	95	113	113	114			
02.									77	79	81	83	84			
03.									49	49	57	57	57			
04.									100	100	104	104	104			
05.									84	85	79	79	80			
06.									65	65	74	74	74			
07.									94	94	105	106	108			
So 08.									105	105	111	111	112			
09.									95	95	103	103	103			
10.									96	96	100	100	100			
11.									94	95	88	88	88			
12.									102	102	109	109	110			
13.									84	86	72	72	74			
14.									103	103	109	109	111			
So 15.									88	90	91	92	92			
16.									86	86	99	100	101			
17.									87	87	92	92	93			
18.									87	87	94	94	94			
19.									86	86	96	96	97			
20.									80	81	84	84	86			
21.									95	95	98	99	99			
So 22.									112	112	117	117	118			
23.									112	112	116	116	116			
24.									104	104	106	106	107			
25.									102	102	112	112	112			
26.									90	90	97	97	98			
27.									87	88	96	96	96			
28.									91	91	108	110	111			
So 29.									98	98	103	104	104			
30.									82	82	82	82	83			
31.									57	57	61	61	62			


	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	со
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						118	
Max.01-M						117	
Max.3-MW							
Max.08-M							
Max.8-MW						112	
Max.TMW						98	
97,5% Perz.							
MMW						73	
Gl.JMW							

Messstelle: HÖFEN / Lärchbichl

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VD	I Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					29	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					7	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: HEITERWANG Ort / B179

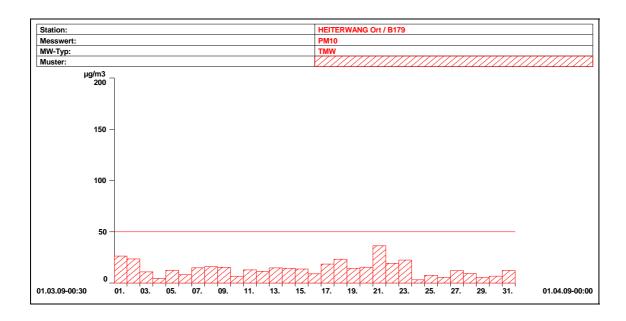
	SC)2	PM10	PM10	NO		NO2			_	03		_		СО	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$			1	$\mu g/m^3$	1	1		mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
So 01.			26		125	67	147	160								
02.			23		112	53	78	79								
03.			11		118	25	46	59								
04.			5		43	20	38	38								
05.			13		63	34	44	60								
06.			8		74	22	61	63								
07.			15		62	28	87	88								
So 08.			16		64	43	72	90								
09.			15		41	23	63	77								
10.			7		79	36	81	85								
11.			13		50	22	56	61								
12.			11		122	48	81	85								
13.			15		107	40	99	101								
14.			14		113	61	93	104								
So 15.			14		60	35	76	84								
16.			9		46	30	57	61								
17.			19		93	43	69	71								
18.			23		83	38	64	70								
19.			14		78	36	79	88								
20.			15		50	29	61	71								
21.			36		176	43	109	122								
So 22.			19		51	24	53	67								
23.			22		41	29	58	70								
24.			3		123	18	86	99								
25.			8		61	26	70	74								
26.			6		57	26	53	63								
27.			12		66	48	69	79								
28.			9		86	31	66	79								
So 29.			5		57	25	59	68								
30.			7		77	17	56	67								
31.			12		43	24	39	46								

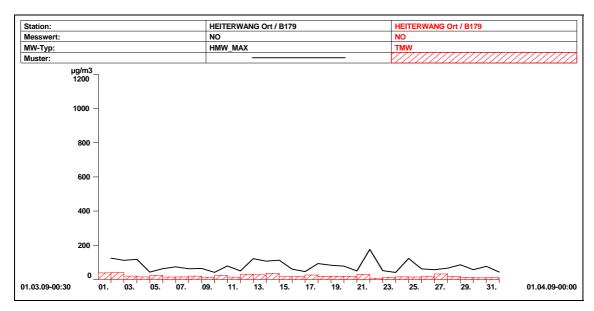
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				176	160		
Max.01-M					147		
Max.3-MW					124		
Max.08-M							
Max.8-MW							
Max.TMW		36		40	67		
97,5% Perz.							
MMW		14		20	34		
Gl.JMW					29		

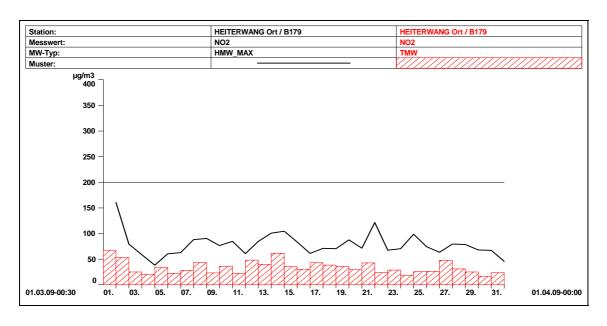
Messstelle: HEITERWANG Ort / B179

Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				14		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0		
ÖAW: SO2-Kriterium für Siedlungsgebiete						


 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)


VDI-RL 2310: NO-Grenzwert


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: MÄRZ 2009 Messstelle: IMST / Imsterau

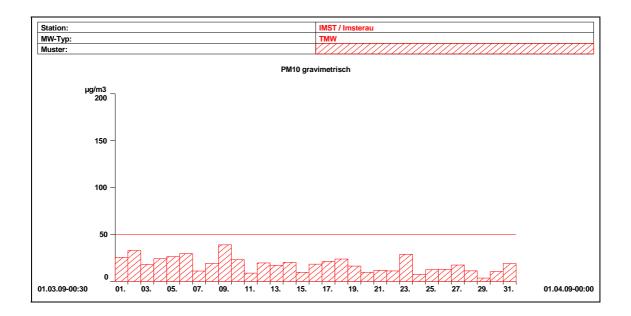
	SO)2	PM10	PM10	NO		NO2		_		03			_	СО	_
	ша	/m³	kont. μg/m³	grav. μg/m³	μg/m³		μg/m³		_		$\mu g/m^3$				mg/m³	
	μg	max	μg/III	μg/III	max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
So 01.				26	62	53	91	94								
02.				33	132	50	76	81								
03.				18	121	39	61	64								
04.				24	121	46	93	96								
05.				26	117	51	74	81								
06.				30	171	48	97	99								
07.				11	36	29	74	79								
So 08.				19	44	30	72	79								
09.				39	92	47	89	93								
10.				23	68	36	61	72								
11.				9	88	42	78	84								
12.				20	86	53	100	104								
13.				17	135	48	77	82								
14.				20	86	47	86	90								
So 15.				10	30	25	58	62								
16.				18	68	36	68	71								
17.				21	76	35	81	82								
18.				24	80	41	89	93								
19.				16	53	30	56	61								
20.				10	40	18	33	43								
21.				12	31	19	35	45								
So 22.				11	26	26	70	83								
23.				29	80	38	68	74								
24.				7	69	25	60	61								
25.				13	56	39	74	79								
26.				13	84	35	71	84								
27.				18	102	44	71	77								
28.				11	43	22	38	45								
So 29.				4	13	19	45	46								
30.				10	40	34	56	57								
31.				19	77	30	54	59								

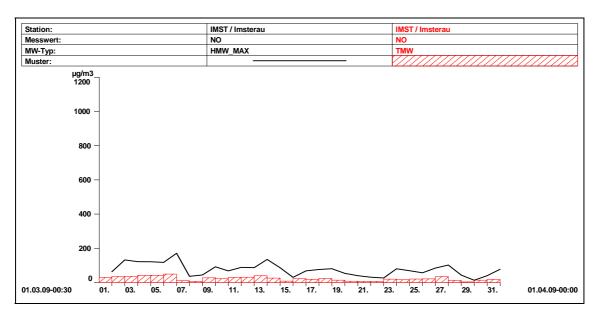
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage			31	31	31		
Verfügbarkeit			100%	98%	98%		
Max.HMW				171	104		
Max.01-M					100		
Max.3-MW					92		
Max.08-M							
Max.8-MW							
Max.TMW			39	49	53		
97,5% Perz.							
MMW			18	22	37		
Gl.JMW					37		

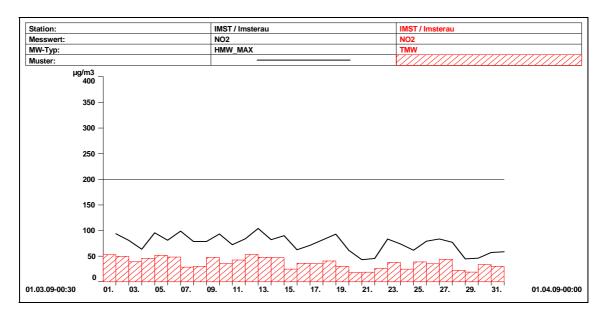
0

MÄRZ 2009 Zeitraum: Messstelle: IMST / Imsterau

Anzahl der Tage mit Grenzwertüberschreitungen


		4				
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	O3	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VD	I Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				15		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						


VDI-RL 2310: NO-Grenzwert


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

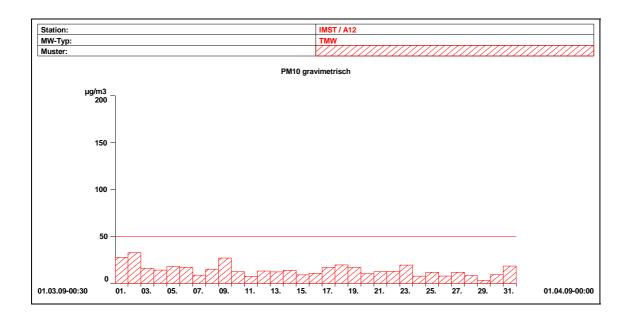
1) An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

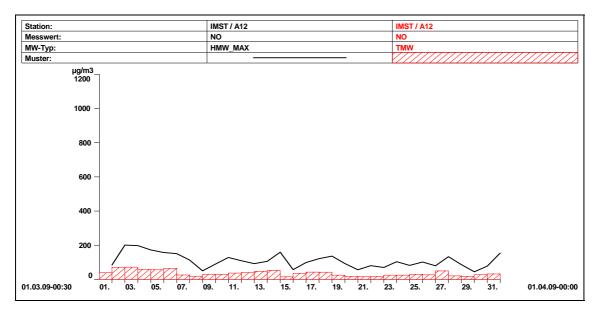
Zeitraum: MÄRZ 2009 Messstelle: IMST / A12

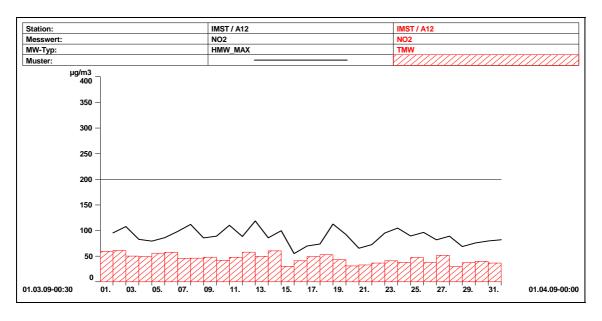
	SC)2	PM10	PM10	NO		NO2				03				СО	_
			kont.	grav.												
	μg	/m³	μg/m³	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
So 01.				28	84	59	91	95								
02.				33	201	61	106	108								
03.				16	198	50	78	83								
04.				14	172	49	75	79								
05.				18	158	56	81	86								
06.				17	151	57	92	98								
07.				9	114	45	90	112								
So 08.				15	50	46	85	86								
09.				27	90	48	89	89								
10.				12	128	42	98	110								
11.				8	109	48	87	88								
12.				13	93	58	112	119								
13.				12	106	49	76	86								
14.				14	160	60	94	100								
So 15.				9	57	30	55	55								
16.				11	99	41	68	70								
17.				17	121	49	73	74								
18.				20	136	53	91	113								
19.				17	93	43	87	92								
20.				10	57	31	61	65								
21.				13	81	33	70	72								
So 22.				13	70	37	78	95								
23.				20	104	41	102	105								
24.				8	82	38	87	89								
25.				12	102	47	89	96								
26.				8	80	37	80	82								
27.				12	133	52	88	89								
28.				8	87	30	58	69								
So 29.				3	44	37	69	76								
30.				9	78	40	78	80								
31.				19	154	37	75	82								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	О3	СО
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage			31	31	31		
Verfügbarkeit			100%	98%	98%		
Max.HMW				201	119		
Max.01-M					112		
Max.3-MW					111		
Max.08-M							
Max.8-MW							
Max.TMW			33	72	61		
97,5% Perz.							
MMW			14	36	45		
Gl.JMW					45		

Zeitraum: MÄRZ 2009 Messstelle: IMST / A12


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				25		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)

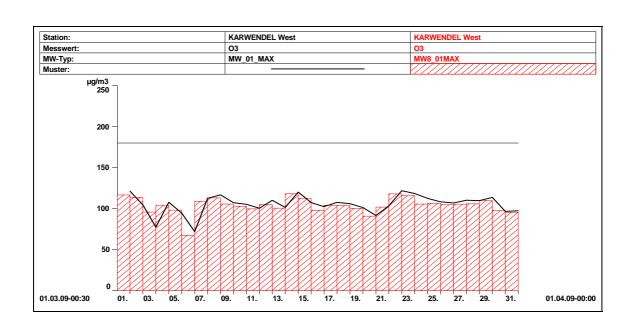

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: KARWENDEL West

	SC)2	PM10	PM10	NO		NO2		_	_	03	_	_		СО	_
			kont.	grav.					_							
	μg		μg/m³	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$	l			μg/m³	ı			mg/m³	I
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
So 01.									117	117	121	122	122			
02.									114	114	104	104	105			
03.									96	95	77	85	84			
04.									104	104	108	108	108			
05.									98	98	94	95	95			
06.									67	67	72	72	72			
07.									109	108	113	113	113			
So 08.									113	113	117	117	117			
09.									106	106	107	107	107			
10.									103	103	105	105	106			
11.									100	100	100	102	102			
12.									105	105	110	110	111			
13.									101	101	101	101	102			
14.									118	118	120	120	120			
So 15.									113	114	107	107	108			
16.									98	98	102	103	103			
17.									104	104	108	109	109			
18.									104	104	106	106	106			
19.									100	100	101	102	102			
20.									91	91	92	92	95			
21.									102	102	103	103	104			
So 22.									118	118	122	123	123			
23.									116	116	118	118	119			
24.									106	106	112	112	113			
25.									106	106	108	109	109			
26.									105	105	107	107	108			
27.									105	106	110	113	113			
28.									106	106	110	110	110			
So 29.									110	110	114	114	115			
30.									98	98	97	97	99			
31.									95	95	97	97	97			


	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						123	
Max.01-M						122	
Max.3-MW							
Max.08-M							
Max.8-MW						118	
Max.TMW						113	
97,5% Perz.							
MMW						96	, in the second
Gl.JMW							

Messstelle: KARWENDEL West

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					31	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					22	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

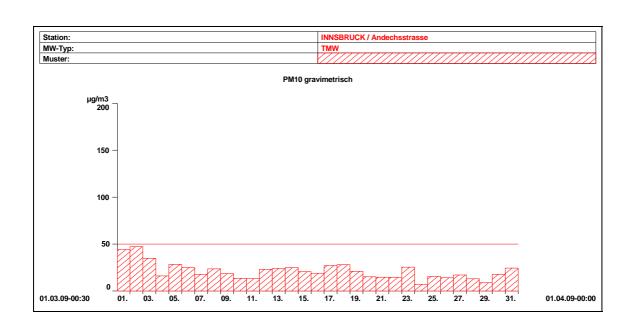
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: INNSBRUCK / Andechsstrasse

	SC)2	PM10	PM10	NO	_	NO2		_		03	_			СО	_
	_		kont.	grav.					_							_
	μg	/m³	μg/m³	μg/m³	μg/m³		μg/m³	I		I	μg/m³	I			mg/m³	ı
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
So 01.				44	113	61	89	92	33	33	51	51	51			_
02.				47	119	67	90	91	20	20	37	37	40			
03.				35	111	59	78	79	16	16	21	22	23			
04.				16	94	29	63	65	80	80	83	83	83			
05.				28	203	61	98	102	72	74	60	74	73			
06.				25	110	54	61	64	4	5	6	6	7			
07.				18	25	42	57	62	48	48	52	54	55			
So 08.				24	40	49	89	93	70	71	80	81	81			
09.				18	46	42	76	79	74	74	78	78	79			
10.				13	29	36	66	68	59	59	65	67	68			
11.				13	58	38	81	90	59	60	73	73	73			
12.				23	91	59	120	120	50	52	71	72	74			
13.				24	170	70	97	101	25	25	40	42	42			
14.				25	55	46	79	80	50	50	60	60	61			
So 15.				21	48	38	61	63	55	55	62	63	63			
16.				19	45	38	64	77	53	54	64	65	67			
17.				27	98	50	73	75	44	44	47	48	50			
18.				28	133	48	82	91	67	67	85	85	86			
19.				21	62	48	75	77	58	61	67	67	68			
20.				15	28	26	53	60	63	63	66	67	67			
21.				15	14	26	63	70	73	73	78	78	78			
So 22.				15	8	25	40	46	79	79	91	91	92			
23.				25	74	41	89	95	78	78	82	83	84			
24.				7	28	24	60	63	78	78	82	82	84			
25.				15	18	33	59	66	58	59	61	61	62			
26.				14	27	39	73	77	54	54	65	65	68			
27.				17	43	39	80	82	58	60	67	67	69			
28.				13	30	24	67	68	77	78	79	79	79			
So 29.				9	4	19	48	52	65	65	69	69	70			
30.				18	50	43	68	70	46	46	53	54	55			
31.				24	77	37	61	63	43	44	48	48	48			

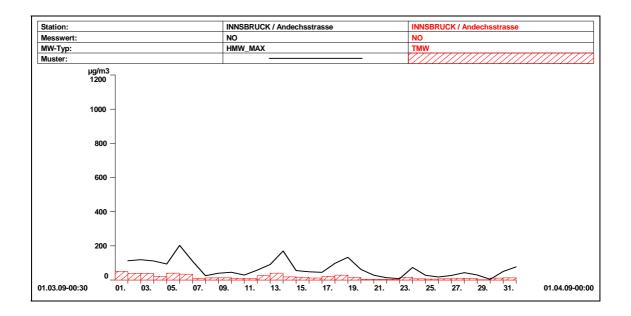
	SO2	PM10	PM10	NO	NO2	О3	СО
		kont.	grav.				
	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage			31	31	31	31	
Verfügbarkeit			100%	98%	98%	98%	
Max.HMW				203	120	92	
Max.01-M					120	91	
Max.3-MW					109		
Max.08-M							
Max.8-MW						80	
Max.TMW			47	50	70	64	
97,5% Perz.							
MMW	·		21	18	42	34	
Gl.JMW					39		

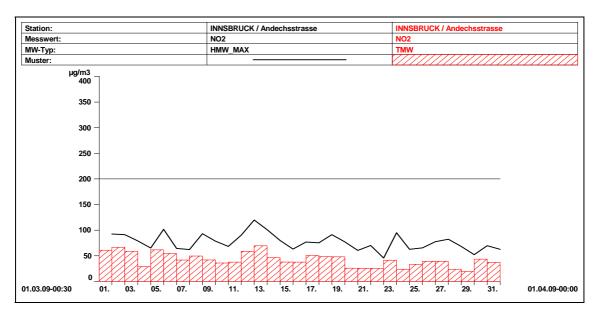
MÄRZ 2009 Zeitraum:

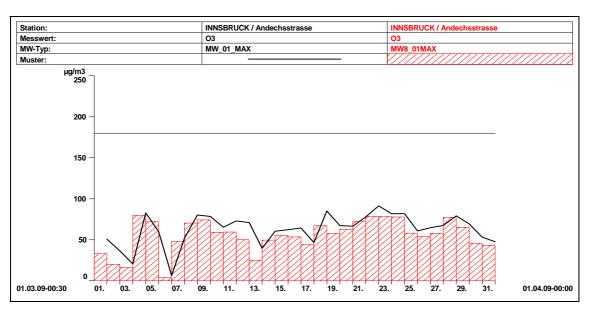

Messstelle: INNSBRUCK / Andechsstrasse

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		

Ozongesetz				
Alarmschwelle			0	
Informationsschwelle			0	
langfristiger Zielwert menschliche Gesundheit			0	
2. VO gegen forstschädliche Luftverunreinigungen				


Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)												
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				18	13							
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1	0							
ÖAW: SO2-Kriterium für Siedlungsgebiete												
VDI-RL 2310: NO-Grenzwert			0									


¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.



 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

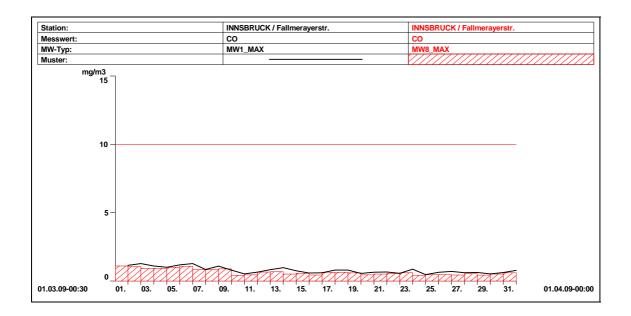
Messstelle: INNSBRUCK / Fallmerayerstrasse

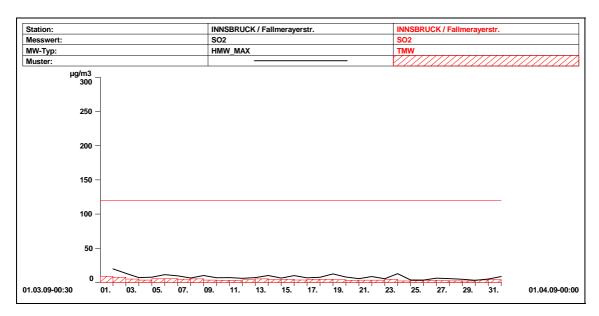
	SO	02	PM10	PM25	NO		NO2				03				СО	
			grav.	grav.												
	μg	/m³	μg/m³	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
So 01.	9	20	35	22	105	62	107	108						1.1	1.1	1.2
02.	8	13	47	34	203	73	100	108						1.0	1.2	1.4
03.	5	7	29	22	125	63	80	80						0.9	1.1	1.2
04.	3	8	17	9	68	35	54	62						0.9	1.0	1.2
05.	5	11	21	12	156	64	108	109						1.0	1.2	1.3
06.	5	10	23	16	180	59	87	92						1.1	1.3	1.4
07.	5	6	15	9	38	43	67	83						0.8	0.8	0.9
So 08.	5	10	17	10	59	46	95	101						0.8	1.1	1.2
09.	3	7	15	8	37	39	64	65						0.9	0.8	0.8
10.	3	7	9	6	74	37	80	92						0.4	0.5	0.6
11.	3	6	11	7	63	42	81	82						0.4	0.7	0.8
12.	4	7	20	11	92	60	119	120						0.7	0.8	0.9
13.	5	10	23	17	194	71	103	111						0.7	1.0	1.0
14.	4	6	23	16	52	46	89	93						0.5	0.7	0.8
So 15.	5	10	17	12	64	38	55	56						0.6	0.6	0.6
16.	4	7	20	11	91	46	69	72						0.4	0.6	0.7
17.	5	7	26	16	99	56	86	96						0.6	0.7	0.8
18.	4	12	26	16	164	51	99	101						0.6	0.8	0.9
19.	4	8	17	9	76	45	70	77						0.6	0.5	0.6
20.	3	6	14	9	56	32	66	75						0.5	0.6	0.7
21.	3	9	12	9	21	28	68	71						0.5	0.7	0.8
So 22.	3	5	13	8	14	26	47	51						0.5	0.5	0.6
23.	4	13	26	14	185	43	110	126						0.6	0.9	1.0
24.	2	4	5	1	43	25	68	75						0.4	0.5	0.5
25.	3	3	13	9	45	39	61	73						0.5	0.6	0.8
26.	3	6	12	7	51	42	75	85						0.5	0.7	0.7
27.	3	6	15	8	41	39	81	82						0.4	0.6	0.6
28.	2	5	13	8	30	24	61	63						0.5	0.6	0.7
So 29.	2	3	6	4	19	27	55	60						0.4	0.5	0.6
30.	3	5	15	11	99	49	79	88						0.5	0.6	0.7
31.	4	9	22	15	130	42	66	71						0.6	0.8	0.8

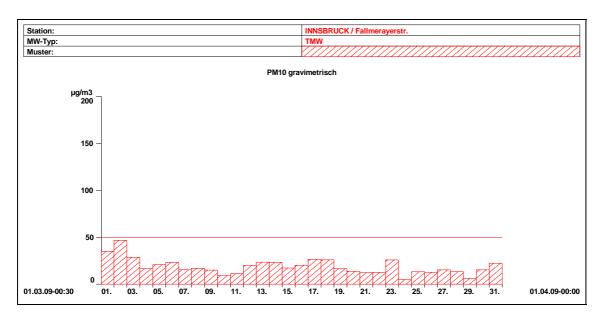
	SO2	PM10 grav.	PM25 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage	31	31	31	31	31		
Verfügbarkeit	98%	100%	100%	98%	98%		99%
Max.HMW	20			203	126		
Max.01-M					119		1.3
Max.3-MW	15				108		
Max.08-M							
Max.8-MW							1.1
Max.TMW	9	47	34	56	73		
97,5% Perz.	10						
MMW	4	19	12	25	45		0.5
Gl.JMW					44		

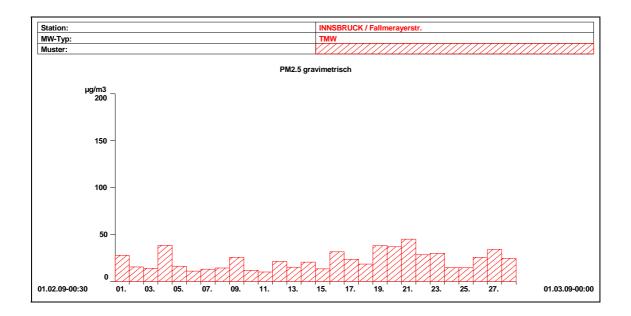
MÄRZ 2009 Zeitraum:

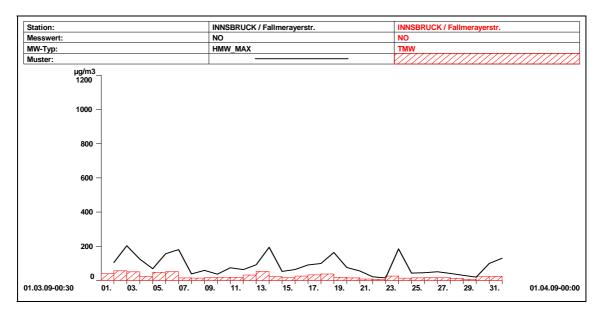
Messstelle: INNSBRUCK / Fallmerayerstrasse

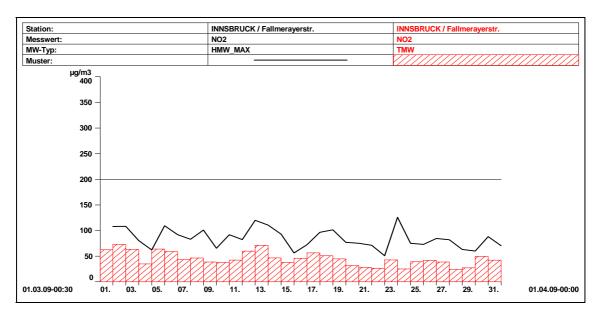

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte	0			0		
Grenzwerte menschliche Gesundheit	0	0		0		0
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation	0			n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen	0/0					


Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)												
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				21								
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1								
ÖAW: SO2-Kriterium für Siedlungsgebiete	0											
VDI-RL 2310: NO-Grenzwert			0									


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

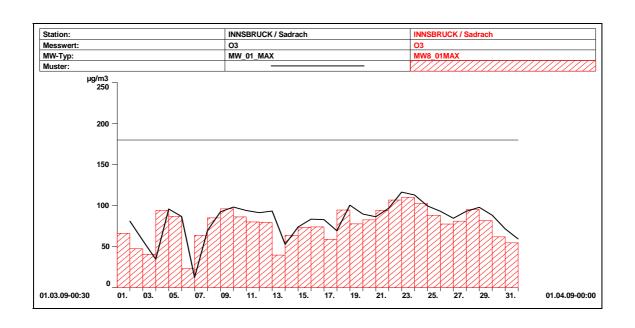

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.


¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.



Messstelle: INNSBRUCK / Sadrach

	SC	02	PM10	PM10	NO	_	NO2		_		03				СО	
			kont.	grav.												
	μg		μg/m³	μg/m³	$\mu g/m^3$		μg/m³				μg/m³				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
So 01.		_							66	66	81	85	87			
02.									47	47	58	58	59			
03.									41	39	35	35	37			
04.									94	94	96	96	96			
05.									87	87	87	87	88			
06.									23	25	12	12	13			
07.									64	64	70	71	71			
So 08.									85	85	92	92	93			
09.									96	96	98	98	99			
10.									86	86	94	94	95			
11.									80	81	91	91	92			
12.									79	80	93	95	96			
13.									40	44	53	54	54			
14.									64	64	74	75	77			
So 15.									73	73	83	83	85			
16.									74	74	83	84	85			
17.									59	59	69	69	71			
18.									95	95	101	101	101			
19.									78	79	90	92	92			
20.									83	84	86	86	88			
21.									94	94	97	97	97			
So 22.									107	107	116	116	118			
23.									110	110	113	113	114			
24.									103	104	100	100	100			
25.									88	89	93	93	94			
26.									78	78	84	85	86			
27.									81	81	93	94	94			
28.									95	95	98	98	98			
So 29.									82	82	88	89	92			
30.									62	62	72	72	72			
31.									55	55	59	60	60			


	SO2	PM10	PM10	NO	NO2	03	СО
		kont.	grav.				
	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						118	
Max.01-M						116	
Max.3-MW							
Max.08-M							
Max.8-MW						110	
Max.TMW						92	
97,5% Perz.							
MMW						55	
Gl.JMW							

Messstelle: INNSBRUCK / Sadrach

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					25	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					3	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

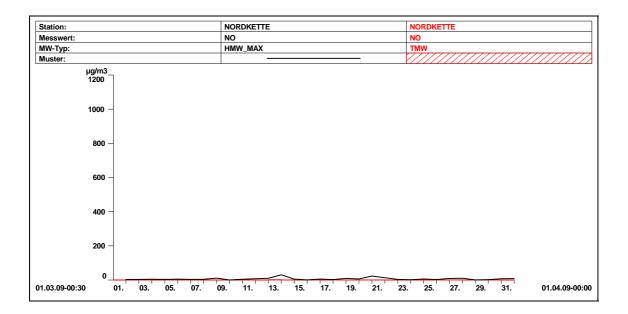
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

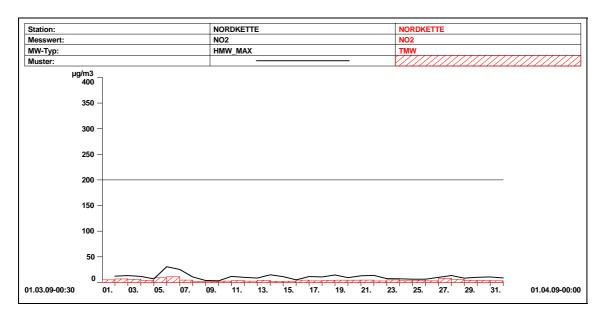
Zeitraum: MÄRZ 2009 Messstelle: NORDKETTE

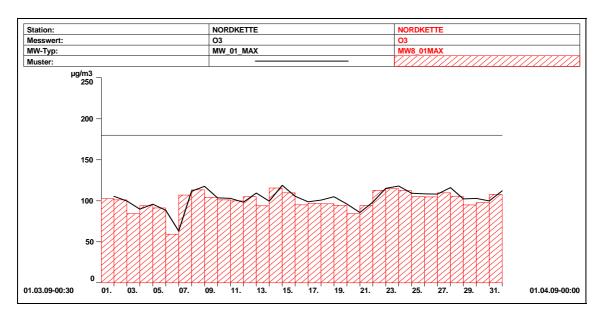
	SO	02	PM10	PM10	NO		NO2	_		О3			_		CO	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	μg/m³		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
So 01.					3	5	10	12	103	103	105	107	108			
02.					4	7	12	13	101	101	100	101	102			
03.					5	6	12	12	84	85	90	91	91			
04.					4	4	7	7	94	94	96	96	96			
05.					5	9	28	31	91	92	88	88	88			
06.					4	11	23	25	59	59	63	63	64			
07.					4	5	11	11	107	107	112	112	112			
So 08.					11	1	3	4	113	114	118	118	119			
09.					0	1	3	3	104	105	104	104	104			
10.					5	3	7	12	101	101	103	103	103			
11.					8	4	9	10	100	100	98	99	99			
12.					10	3	8	8	105	105	109	109	110			
13.					31	4	12	15	94	95	100	100	100			
14.					5	2	7	11	116	116	119	119	119			
So 15.					1	2	4	5	110	110	105	105	106			
16.					6	4	10	11	95	95	99	99	99			
17.					3	3	9	11	97	97	101	101	102			
18.					9	4	10	15	96	96	105	106	107			
19.					6	4	9	9	94	94	96	96	96			
20.					24	4	11	13	84	84	86	86	87			
21.					14	5	10	14	94	94	98	98	99			
So 22.					4	3	7	7	113	113	115	115	116			
23.					2	5	7	7	115	115	118	118	119			
24.					6	3	6	6	112	112	109	109	110			
25.					3	4	6	6	105	105	108	108	109			
26.					10	3	9	10	105	105	108	109	109			
27.					10	8	13	13	110	110	116	116	116			
28.					1	6	8	8	106	106	102	102	103			
So 29.					2	4	9	10	95	95	103	103	104			
30.					7	4	8	11	98	98	100	100	100			
31.					8	3	7	9	108	108	112	112	113			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	О3	СО
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage				31	31	31	
Verfügbarkeit				98%	98%	98%	
Max.HMW				31	31	119	
Max.01-M					28	119	
Max.3-MW					27		
Max.08-M							
Max.8-MW						116	
Max.TMW				3	11	111	
97,5% Perz.							
MMW				1	4	92	
Gl.JMW					4		

Zeitraum: MÄRZ 2009 Messstelle: NORDKETTE


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit				0		
Zielwerte menschliche Gesundheit				0		
Zielwerte Ökosysteme, Vegetation				0		
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VD	I Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				0	30	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0	17	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: MUTTERS / Gärberbach - A13

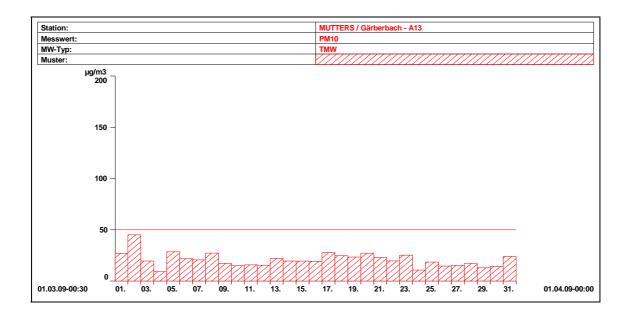
	SC	02	PM10	PM10	NO		NO2				03		_		СО	
			kont.	grav.		_										
	μg	/m³	μg/m³	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
So 01.			27		84	56	115	119								
02.			45		237	69	110	113								
03.			19		200	54	91	97								
04.			9		212	40	89	100								
05.			28		226	63	98	101								
06.			22		173	64	83	84								
07.			21		116	72	100	111								
So 08.			27		134	54	128	134								
09.			17		243	39	70	79								
10.			15		163	42	85	92								
11.			16		127	54	100	102								
12.			15		198	59	101	108								
13.			22		208	78	99	102								
14.			20		172	53	105	119								
So 15.			19		78	51	75	80								
16.			19		182	49	116	123								
17.			28		176	60	111	119								
18.			25		171	58	119	122								
19.			23		147	61	103	108								
20.			27		106	53	98	102								
21.			23		94	54	94	106								
So 22.	_		20		55	39	103	104								
23.			25		148	45	101	104								
24.			11		85	33	85	99								
25.			19		119	52	94	103								
26.			15		149	58	109	119								
27.			15		108	53	103	114								
28.			17		76	36	52	52								
So 29.			13		66	49	83	85								
30.			14		115	56	79	79								
31.			24		156	50	74	80								

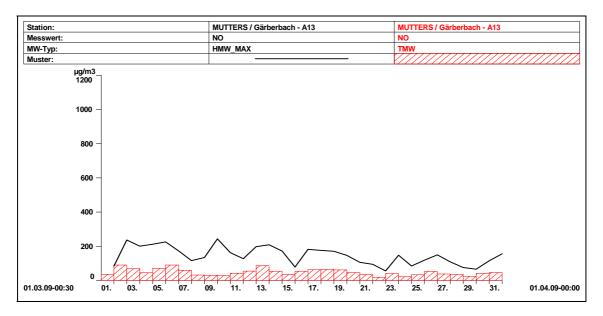
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				243	134		
Max.01-M					128		
Max.3-MW					105		
Max.08-M							
Max.8-MW							
Max.TMW		45		90	78		
97,5% Perz.							
MMW		21		48	53		
Gl.JMW					50		

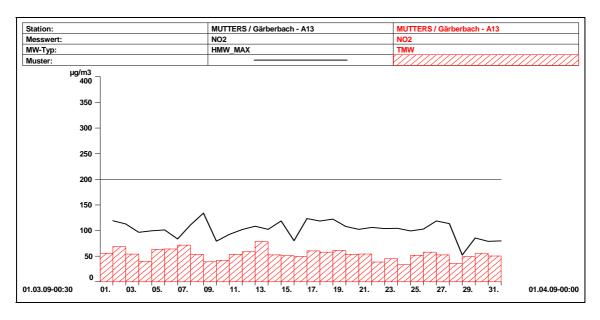
MÄRZ 2009 Zeitraum:

Messstelle: MUTTERS / Gärberbach - A13

Beurteilungsgrundlage		PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						


Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						


Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)							
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				29			
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1			
ÖAW: SO2-Kriterium für Siedlungsgebiete							
VDI-RL 2310: NO-Grenzwert			0				


 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

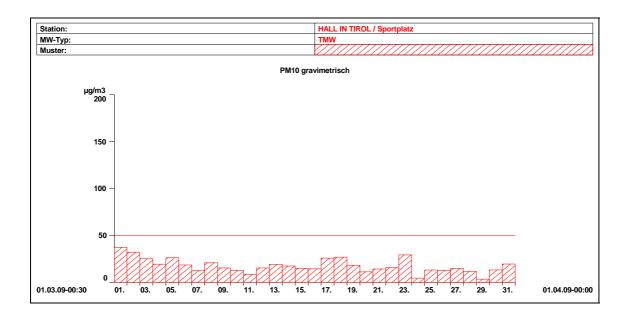
1) An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

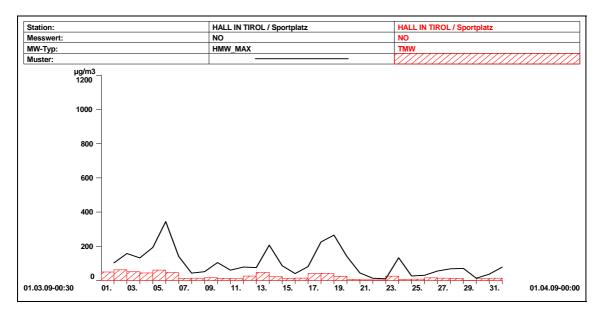
 $Messstelle: \quad HALL\ IN\ TIROL\ /\ Sportplatz$

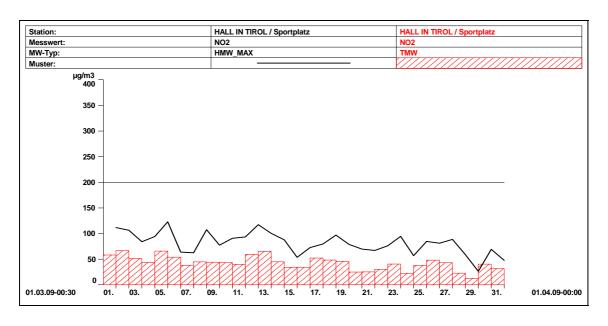
	SO)2	PM10	PM10	NO		NO2		_		03		_		со	_
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
So 01.				37	103	58	99	112								
02.				32	158	66	105	106								
03.				25	132	51	81	84								
04.				19	193	44	87	94								
05.				26	344	66	107	123								
06.				19	141	54	63	64								
07.				13	43	38	58	62								
So 08.				21	51	45	101	107								
09.				15	105	44	76	77								
10.				13	60	43	86	91								
11.				9	79	40	87	93								
12.				15	75	59	114	117								
13.				19	207	65	99	100								
14.				17	86	45	85	88								
So 15.				15	40	34	52	54								
16.				15	81	34	69	73								
17.				26	225	52	77	80								
18.				27	265	48	95	97								
19.				18	140	45	74	79								
20.				11	43	25	61	70								
21.				14	13	25	63	67								
So 22.				16	10	30	52	76								
23.				29	133	40	92	94								
24.				5	26	22	51	57								
25.				13	30	38	82	85								
26.				13	55	48	78	81								
27.				15	68	43	88	89								
28.				12	70	23	55	59								
So 29.				3	13	12	25	26								
30.				13	37	40	68	69								
31.				20	78	32	46	48								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	О3	СО
	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage			31	31	31		
Verfügbarkeit			100%	98%	98%		
Max.HMW				344	123		
Max.01-M					114		
Max.3-MW					108		
Max.08-M							
Max.8-MW							
Max.TMW			37	62	66		
97,5% Perz.							
MMW			18	23	42		
Gl.JMW					42		

Messstelle: HALL IN TIROL / Sportplatz


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				20		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

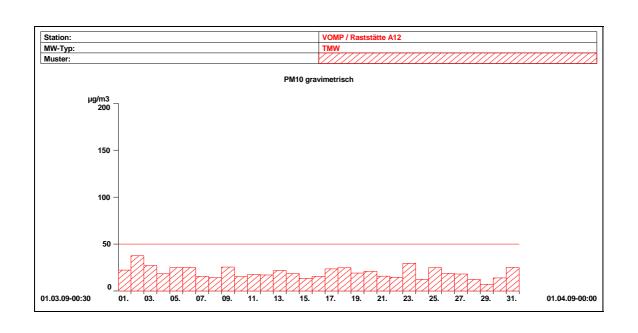
¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: VOMP / Raststätte A12

	SO)2	PM10	PM10	NO		NO2				03		_		со	
	ша	/m³	kont. μg/m³	grav. μg/m³	μg/m³		μg/m³				μg/m³				mg/m³	
	μg	max	μg/III	μg/III	max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
So 01.				22	159	75	108	135								
02.				38	539	104	176	181								
03.				27	470	81	133	137								
04.				18	310	59	101	133								
05.				25	499	85	145	157								
06.				25	388	91	143	154								
07.				15	355	92	138	158								
So 08.				14	85	60	92	101								
09.				26	416	92	140	149								
10.				15	351	78	124	133								
11.				18	476	99	163	169								
12.				17	433	80	126	137								
13.				22	491	100	156	167								
14.				18	289	65	100	111								
So 15.				14	104	55	83	101								
16.				15	287	52	102	115								
17.				24	422	67	113	127								
18.				25	482	68	123	131								
19.				19	377	76	116	126								
20.				21	227	73	127	128								
21.				16	225	60	100	104								
So 22.				14	94	48	111	116								
23.				29	401	66	133	144								
24.				12	311	69	141	160								
25.				25	361	87	155	164								
26.				19	431	92	162	176								
27.				18	216	65	101	107								
28.				12	165	46	65	71								
So 29.				7	55	41	75	79								
30.				14	211	64	112	113								
31.				25	252	59	99	106								

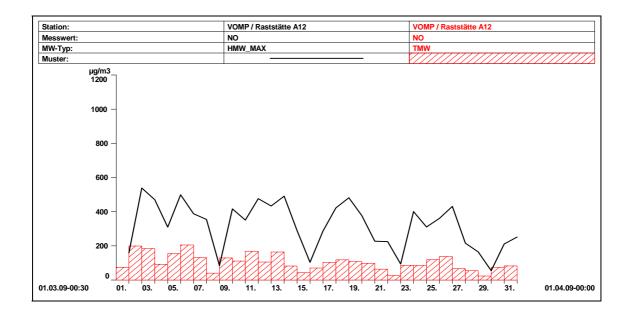
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	со
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage			31	31	31		
Verfügbarkeit			100%	98%	98%		
Max.HMW				539	181		
Max.01-M					176		
Max.3-MW					162		
Max.08-M							
Max.8-MW							
Max.TMW			38	205	104		
97,5% Perz.							
MMW			20	103	72		
Gl.JMW					68		

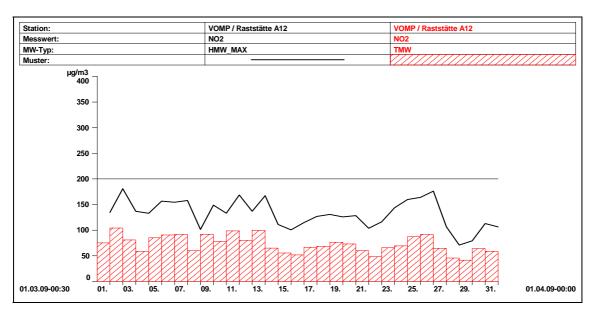
Messstelle: VOMP / Raststätte A12


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		10		
Zielwerte Ökosysteme, Vegetation				n.a.		

Ozongesetz			
Alarmschwelle			
Informationsschwelle			
langfristiger Zielwert menschliche Gesundheit			
2. VO gegen forstschädliche Luftverunreinigungen			

Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)												
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				31								
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				10								
ÖAW: SO2-Kriterium für Siedlungsgebiete												
VDI-RL 2310: NO-Grenzwert			0									


 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: VOMP / An der Leiten

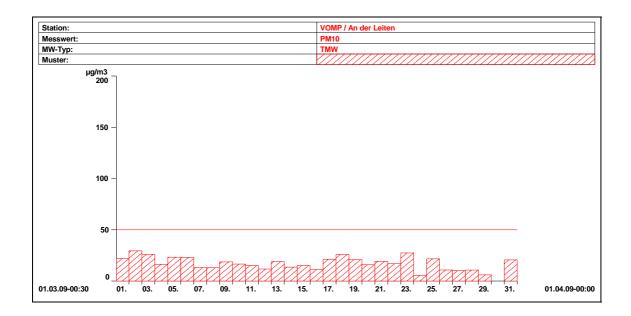
	SC)2	PM10	PM10	NO		NO2			_	03	_			CO	
		_	kont.	grav.												
	μg/	m³	$\mu g/m^3$	μg/m³	μg/m³		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
So 01.			22		107	57	88	91								
02.			29		226	75	93	101								
03.			26		172	53	72	88								
04.			16		92	44	80	85								
05.			23		362	65	114	133								
06.			23		182	57	71	79								
07.			13		70	51	80	91								
So 08.			13		39	43	81	83								
09.			19		148	61	89	92								
10.			17		90	53	80	83								
11.			15		210	63	108	116								
12.			12		223	59	82	89								
13.			19		187	64	83	86								
14.			14		99	41	64	70								
So 15.			15		29	38	52	55								
16.			11		88	35	62	66								
17.			21		191	45	84	86								
18.			26		229	44	82	86								
19.			21		112	48	73	79								
20.			16		51	39	70	78								
21.			19		20	31	65	70								
So 22.			17		14	34	66	73								
23.			27		177	38	75	81								
24.			5		72	35	73	92								
25.			22		125	54	98	106								
26.			11		206	58	96	104								
27.			10		37	38	71	75								
28.			11		74	27	43	43								
So 29.			6		8	22	43	45								
30.					25	34	55	63								
31.			21		37	36	50	53								

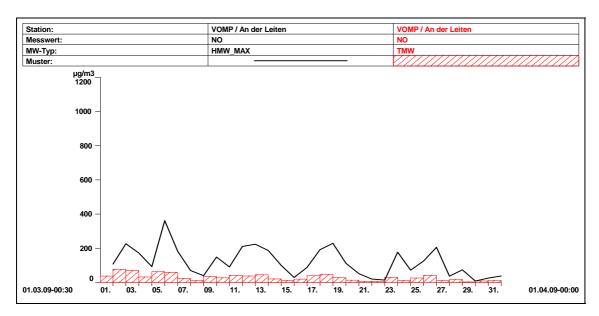
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	со
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		30		31	31		
Verfügbarkeit		99%		97%	97%		
Max.HMW				362	133		
Max.01-M					114		
Max.3-MW					98		
Max.08-M							
Max.8-MW							
Max.TMW		29		77	75		
97,5% Perz.							
MMW		17		29	46		
Gl.JMW					43		

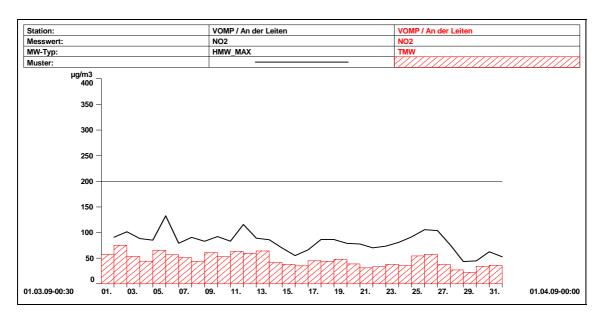
Messstelle: VOMP / An der Leiten

Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				21		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						


 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)


VDI-RL 2310: NO-Grenzwert


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

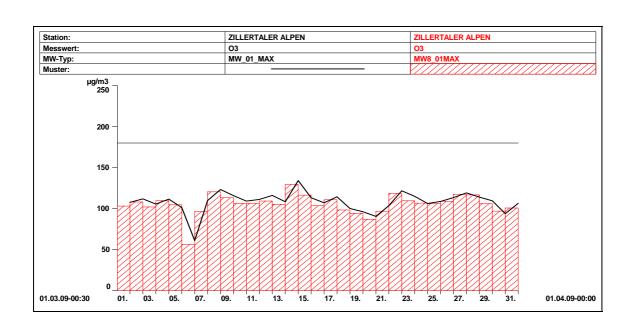
¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: ZILLERTALER ALPEN

	SO2		PM10	PM10	NO	_	NO2				03				СО	_
			kont.	grav.												
	μg	/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
So 01.									103	103	108	108	108			
02.									108	108	112	112	112			
03.									102	102	106	106	106			
04.									110	110	112	112	112			
05.									105	105	101	101	101			
06.									56	56	61	61	61			
07.									96	97	110	112	112			
So 08.	_								120	120	123	125	126			
09.									113	113	116	116	117			
10.									106	106	109	110	112			
11.									107	107	111	112	112			
12.									109	109	116	119	119			
13.									105	105	108	108	112			
14.									129	129	134	134	135			
So 15.									116	117	113	113	113			
16.									103	103	107	107	112			
17.									111	111	114	117	118			
18.									98	98	100	100	101			
19.									94	94	96	96	97			
20.									87	87	90	92	92			
21.									97	97	103	105	107			
So 22.									118	118	122	122	123			
23.									110	110	115	115	116			
24.									107	107	106	106	106			
25.									106	106	109	109	110			
26.									109	109	113	114	115			
27.									117	117	119	119	120			
28.									117	117	114	114	114			
So 29.									106	106	110	110	110			
30.									97	97	94	94	94			
31.									101	101	106	106	109			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	со
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						135	
Max.01-M						134	
Max.3-MW							
Max.08-M							
Max.8-MW						129	
Max.TMW						122	
97,5% Perz.							
MMW						97	
Gl.JMW							

Messstelle: ZILLERTALER ALPEN


Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					1	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VD	I Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					30	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					24	
ÖAW: SO2-Kriterium für Siedlungsgebiete						

 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

VDI-RL 2310: NO-Grenzwert

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: BRIXLEGG / Innweg

	SO)2	PM10	PM10	NO		NO2		О3		co					
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
So 01.	3	13		24												
02.	4	7		34												
03.	4	10		31												
04.	2	8		20												
05.	4	17		31												
06.	3	6		24												
07.	2	5		15												
So 08.	2	6		14		_										
09.	1	3		13												
10.	1	2		8												
11.	1	3		8												
12.	1	2		10												
13.	2	6		21												
14.	2	6		18												
So 15.	2	9		20												
16.	5	37		23												
17.	2	13		28												
18.	4	10		30												
19.	4	29		26												
20.	14	280		24												
21.	7	123		27												
So 22.	2	5		17												
23.	2	12		24												
24.	2	15		6												
25.	2	6		17												
26.	2	18		11												
27.	6	35		27												
28.	8	36		17												
So 29.	15	90		27												
30.	15	75		26												
31.	7	41		37												

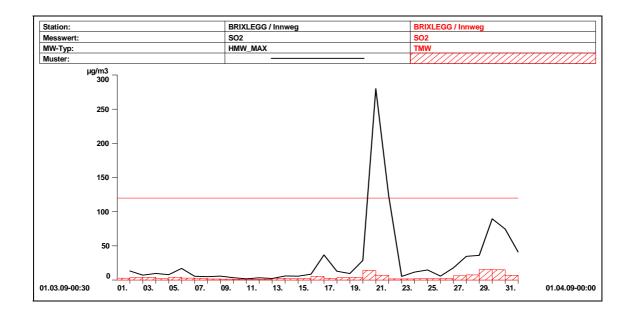
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage	31		31				
Verfügbarkeit	98%		100%				
Max.HMW	280						
Max.01-M							
Max.3-MW	83						
Max.08-M							
Max.8-MW							
Max.TMW	15		37				
97,5% Perz.	24						
MMW	4		21			-	
Gl.JMW							

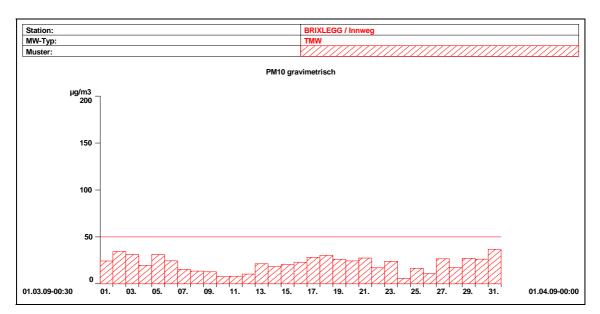
MÄRZ 2009 Zeitraum:

Messstelle: BRIXLEGG / Innweg

Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
G-Luft						
Warnwerte	0					
Grenzwerte menschliche Gesundheit	0	0				
Zielwerte menschliche Gesundheit		0				
Zielwerte Ökosysteme, Vegetation	0					
Dzongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen	0/0					
2. VO gegen forstschädliche Luftverunreinigungen Wirkungsbezogene Grenzwerte	0/0					


ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)											
0											
	Richtlini 0	Cichtlinie)	Richtlinie)	Cichtlinie) 0	Cichtlinie) 0						


VDI-RL 2310: NO-Grenzwert

 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

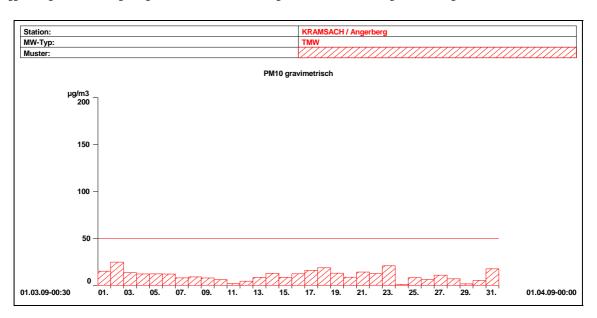
Messstelle: KRAMSACH / Angerberg

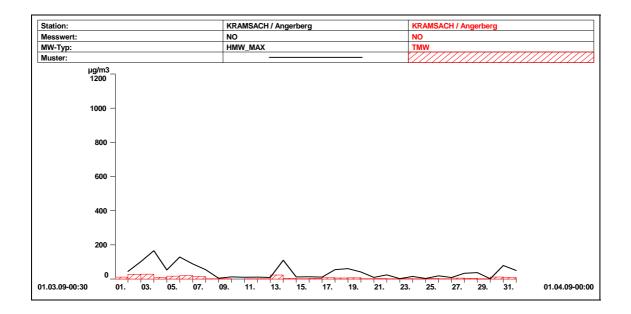
	SC)2	PM10	PM10	NO		NO2				03				CO	
			kont.	grav.												
	μg/	m³	$\mu \text{g}/\text{m}^3$	$\mu \text{g/m}^3$	$\mu \text{g}/\text{m}^3$		$\mu g/m^3$			1	$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
So 01.				15	45	38	53	55	55	55	66	67	68			
02.				25	102	58	85	90	45	46	34	34	43			
03.				13	166	40	60	65	35	35	45	45	46			
04.				12	53	29	47	48	80	80	94	94	95			
05.				12	129	37	75	76	65	64	58	60	61			
06.				12	89	41	58	59	11	11	15	18	19			
07.				8	55	37	61	66	61	61	71	71	74			
So 08.				9	5	19	39	43	76	76	82	83	84			
09.				8	13	21	48	56	88	88	98	98	98			
10.				6	10		52	57	69	70	81	81	82			
11.				2	11	14	37	39	80	80	86	86	87			
12.				4	9	18	29	32	77	77	91	91	92			
13.				8	110	51	73	78	66	67	59	59	60			
14.				13	12	30	53	67	63	64	77	77	78			
So 15.				8	13	20	37	38	69	69	77	77	78			
16.				12	11	25	41	43	66	66	77	77	79			
17.				16	55	33	60	62	47	48	60	60	64			
18.				19	61	28	47	54	79	80	91	91	92			
19.				13	41	32	59	65	66	68	73	74	77			
20.				9	9	16	40	46	73	73	81	81	81			
21.				14	24	20	44	52	85	85	89	90	91			
So 22.				12	3	11	18	20	104	104	112	112	112			
23.				21	15	19	50	63	103	103	109	109	110			
24.				1	4	10	24	28	99	100	100	100	102			
25.				8	19	26	65	80	83	83	81	81	82			
26.				6	9	24	53	54	76	76	83	83	84			
27.				11	34	30	55	61	65	65	78	78	79			
28.				7	38	16	40	40	94	94	102	102	102			
So 29.				1	1	12	36	38	87	87	90	91	92			
30.				5	79	34	74	74	59	60	69	69	70			
31.				17	50	28	47	49	51	51	56	56	57			

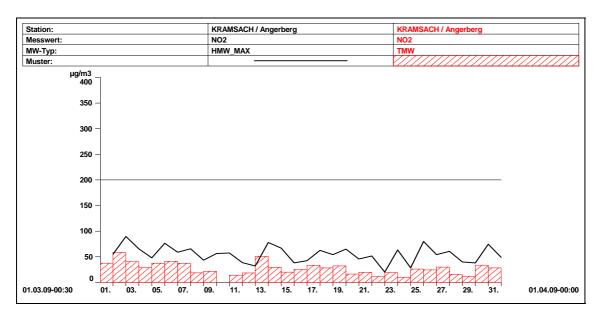
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage			31	30	30	31	
Verfügbarkeit			100%	98%	98%	98%	
Max.HMW				166	90	112	
Max.01-M					85	112	
Max.3-MW					81		
Max.08-M							
Max.8-MW						104	
Max.TMW			25	29	58	85	
97,5% Perz.							
MMW			11	8	27	48	-
Gl.JMW					25		

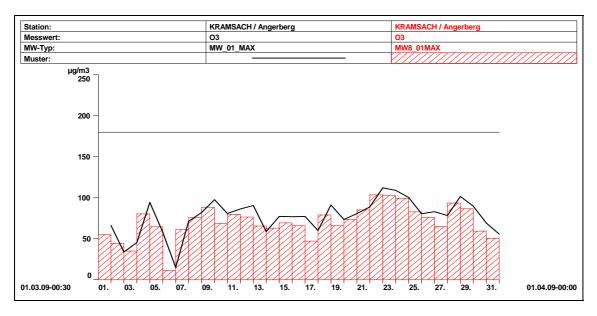
Messstelle: KRAMSACH / Angerberg

Anzahl der Tage mit Grenzwertüberschreitungen


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				0		
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI I	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				3	24	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0	2	
ÖAW: SO2-Kriterium für Siedlungsgebiete						


 $\ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


VDI-RL 2310: NO-Grenzwert


- Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen
- n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.
- 1) An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

0

Zeitraum: MÄRZ 2009 Messstelle: KUNDL / A12

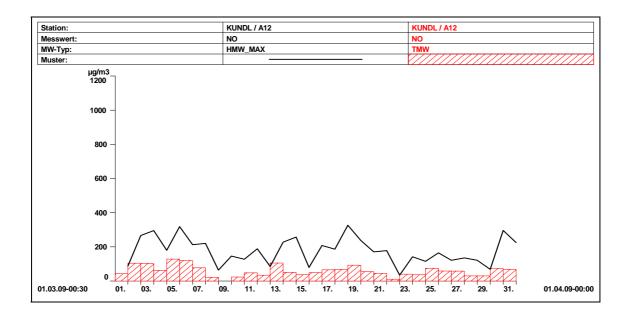
	SO)2	PM10	PM10	NO	_	NO2		03			_		СО		
		, ,	kont.	grav.	/ 2		/ 2				/ 2				/ 2	
	μg	/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				μg/m³	1			mg/m³	
Too	TMW	max HMW	TMW	TMW	max HMW	TMW	max 01-M	max HMW	max 08-M	max 8-MW	max 01-M	max 1-MW	max HMW	max 8-MW	max 01-M	max HMW
Tag	1 IVI VV	TIVI W	1 IVI VV	1 IVI VV					06-101	0-1VI VV	01-101	1-IVI VV	TIVI W	0-1VI VV	01-101	TIVI W
So 01.					88	60	113	120								_
02. 03.					267	79	122	125 103								
03.					295	64	100									
04.					180	60	114	124								
					319	85	112	130								
06. 07.					213 220	75 81	121 114	123 131								
So 08.					64	49	103	110								
09.					146	49	84	95								
10.					128	40	89	93								
11.					189	54	104	114								
12.					85	52	93	100								
13.					228	91	121	125								
14.					257	53	103	115								
So 15.					80	62	115	124								
16.					208	51	100	105								
17.					186	55	100	103								
18.					327	57	109	143								
19.					238	76	110	118								
20.					170	60	113	114								
21.					178	58	96	102								
So 22.					35	29	51	64								
23.					142	54	102	106								
24.					115	44	100	111								
25.					165	77	120	128								
26.					121	70	109	117								
27.					135	60	119	124								
28.					122	33	76	89								
So 29.					69	58	98	101								
30.					296	67	123	127								
31.					225	55	96	115								

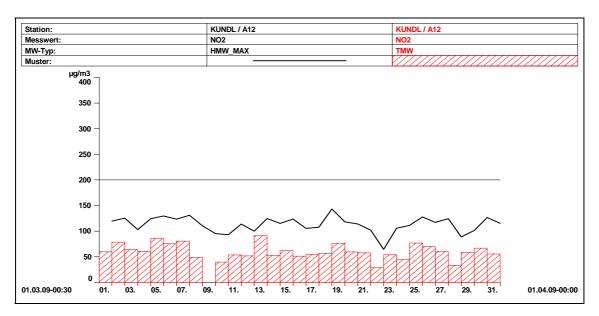
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage				30	30		
Verfügbarkeit				98%	98%		
Max.HMW				327	143		
Max.01-M					123		
Max.3-MW					117		
Max.08-M							
Max.8-MW							
Max.TMW				128	91		
97,5% Perz.							
MMW			-	60	60	, in the second	
Gl.JMW					58		

0

MÄRZ 2009 Zeitraum: Messstelle: KUNDL / A12

Anzahl der Tage mit Grenzwertüberschreitungen


	l.	1		1		ı
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit				0		
Zielwerte menschliche Gesundheit				3		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				30		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				3		
ÖAW: SO2-Kriterium für Siedlungsgebiete						


VDI-RL 2310: NO-Grenzwert

 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

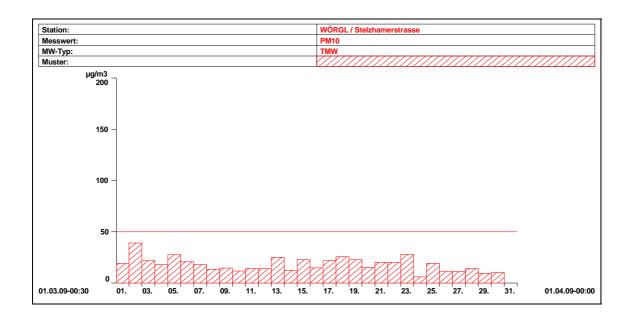
¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

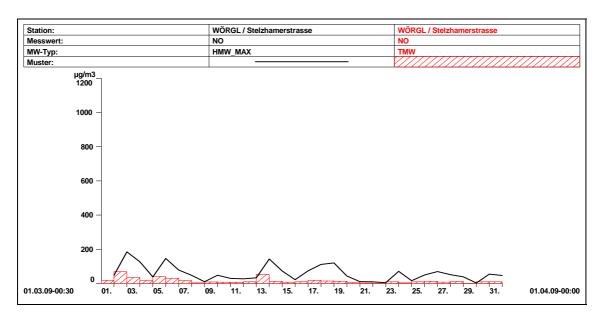
Messstelle: WÖRGL / Stelzhamerstrasse

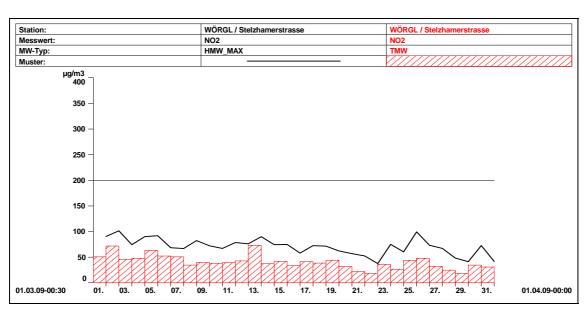
	SO)2	PM10	PM10	NO		NO2	_	03			_		CO			
			kont.	grav.													
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$			$\mu g/m^3$		μg/				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max	
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW	
So 01.			19		48	51	88	90									
02.			39		185	72	101	101									
03.			22		126	46	72	74									
04.			18		38	48	85	90									
05.			28		146	63	86	92									
06.			21		78	52	68	68									
07.			18		48	51	66	67									
So 08.			13	_	10	35	72	82									
09.			15		48	40	66	72									
10.			12		30	38	63	67									
11.			14		27	39	75	79									
12.			14		33	43	72	76									
13.			25		143	73	88	90									
14.			13		73	37	69	74									
So 15.			23	_	21	42	68	75									
16.			15		73	33	56	58									
17.			22		111	41	72	72									
18.			26		120	38	68	71									
19.			23		43	44	60	62									
20.			15		10	32	54	57									
21.			20		9	22	43	52									
So 22.			20		4	18	29	38									
23.			28		71	36	75	75									
24.			6		16	26	58	60									
25.			19		49	44	99	99									
26.			12		70	48	71	73									
27.			11		51	32	61	67									
28.			14		38	25	45	48									
So 29.			10		3	18	39	41									
30.			10		54	35	69	73									
31.					46	31	42	42									

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		30		31	31		
Verfügbarkeit		99%		98%	98%		
Max.HMW				185	101		
Max.01-M					101		
Max.3-MW					96		
Max.08-M							
Max.8-MW							
Max.TMW		39		69	73		
97,5% Perz.							
MMW		18		15	40		
Gl.JMW					32		

Messstelle: WÖRGL / Stelzhamerstrasse


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				15		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

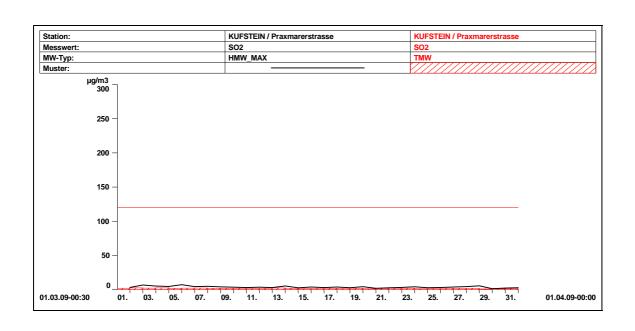
¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: KUFSTEIN / Praxmarerstrasse

	SC	02	PM10	PM10	NO		NO2	_	03				co			
			kont.	grav.												
	μg	/m³	μg/m³	$\mu g/m^3$	μg/m³		$\mu g/m^3$	ı			$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
So 01.	2	3	17		75	39	54	55								
02.	3	7	23		125	52	81	81								
03.	2	5	13		85	33	49	52								
04.	2	5	21		59	50	85	91								
05.	2	7	15		131	43	68	82								
06.	2	4	12		71	38	58	60								
07.	2	5	14		47	39	58	69								
So 08.	2	4	14		76	32	55	61								
09.	2	3	12		56	38	74	80								
10.	2	3	12		38	34	74	80								
11.	2	3	11		33	36	87	88								
12.	2	3	12		38	39	66	67								
13.	2	5	14		142	64	94	97								
14.	2	3	14		28	36	59	63								
So 15.	1	4	16		92	31	50	57								
16.	2	3	13		69	31	55	61								
17.	2	4	19		73	34	50	55								
18.	1	3	19		17	27	47	67								
19.	2	4	20		73	40	67	70								
20.	1	2	14		14	22	36	40								
21.	2	3	17		19	23	36	42								
So 22.	2	3	20		11	20	37	39								
23.	2	4	25		41	38	78	79								
24.	1	3	4		57	27	65	82								
25.	1	3	15		68	40	71	89								
26.	2	4	13		96	54	92	99								
27.	2	4	11		116	37	70	74								
28.	2	6	13		123	29	47	50								
So 29.	1	1	5		3	16	40	46								
30.	1	2	9		40	29	59	70								
31.	2	3	21		37	29	40	42								

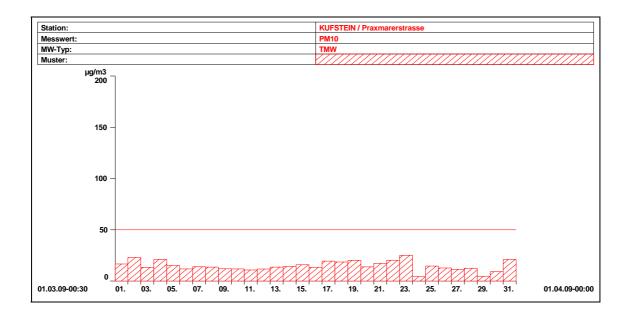
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	$\mu g/m^3$	μg/m³	mg/m³
Anz. Messtage	31	31		31	31		
Verfügbarkeit	98%	100%		98%	98%		
Max.HMW	7			142	99		
Max.01-M					94		
Max.3-MW	6				92		
Max.08-M							
Max.8-MW							
Max.TMW	3	25		43	64		
97,5% Perz.	4						
MMW	2	15		13	35		
Gl.JMW					30		

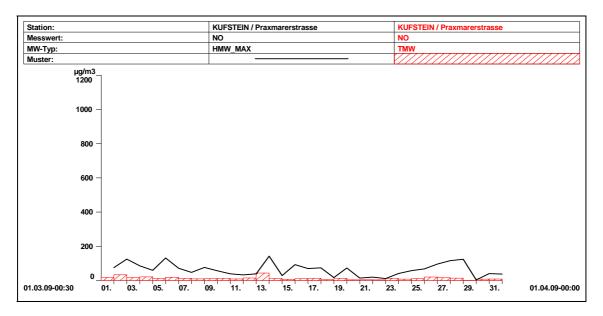
Messstelle: KUFSTEIN / Praxmarerstrasse

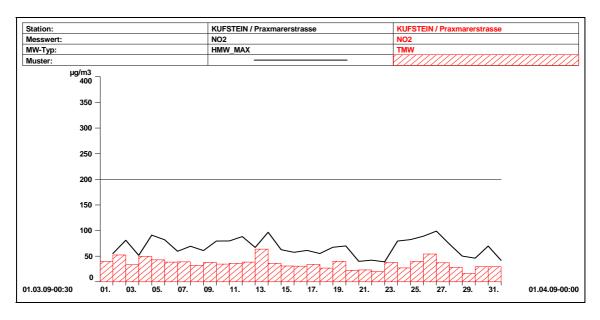

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte	0			0		
Grenzwerte menschliche Gesundheit	0	0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation	0			n.a.		

Ozongesetz												
Alarmschwelle												
Informationsschwelle												
langfristiger Zielwert menschliche Gesundheit												
2. VO gegen forstschädliche Luftverunreinigungen	0/0											

Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)													
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				8									
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0									
ÖAW: SO2-Kriterium für Siedlungsgebiete	0												
VDI-RL 2310: NO-Grenzwert			0										


 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

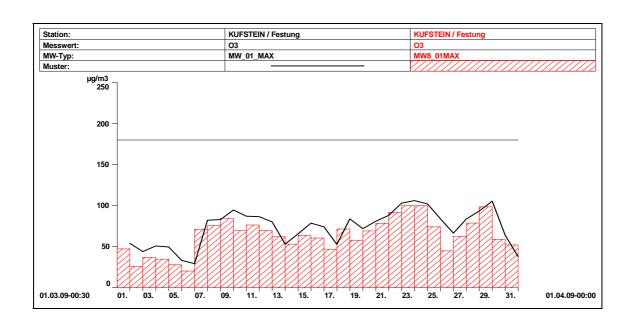


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: KUFSTEIN / Festung

	SO)2	PM10	PM10	NO	NO2				03				CO				
		_	kont.	grav.														
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$			μg/m³				mg/m³			
		max			max		max	max	max	max	max	max	max	max	max	max		
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW		
So 01.									47	47	54	59	62					
02.									26	27	44	44	44					
03.									37	37	51	51	51					
04.									35	35	50	56	60					
05.									28	29	33	34	35					
06.									20	21	29	29	31					
07.									71	71	82	83	85					
So 08.									76	76	83	85	85					
09.									85	85	95	95	95					
10.									69	70	87	87	87					
11.									76	76	86	87	87					
12.									70	68	80	83	84					
13.									62	63	53	53	54					
14.									53	53	66	66	66					
So 15.									64	64	79	79	80					
16.									60	61	74	76	77					
17.									47	47	53	54	55					
18.									71	71	84	84	84					
19.									58	58	72	73	75					
20.									69	69	81	81	82					
21.									78	78	88	88	89					
So 22.									92	92	103	105	108					
23.									100	100	106	106	108					
24.									100	100	102	103	104					
25.									74	74	84	84	84					
26.									45	49	66	66	69					
27.									63	63	84	86	87					
28.									79	80	93	94	94					
So 29.									98	98	105	105	106					
30.									59	59	64	64	65					
31.									52	51	38	38	38					


	SO2	PM10 kont.	PM10 grav.	NO	NO2	О3	СО
	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						108	
Max.01-M						106	
Max.3-MW							
Max.08-M							
Max.8-MW						100	
Max.TMW						78	
97,5% Perz.							
MMW						42	
Gl.JMW							

Messstelle: KUFSTEIN / Festung

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					19	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					0	
ÖAW: SO2-Kriterium für Siedlungsgebiete			·			
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: LIENZ / Amlacherkreuzung

	SO	02	PM10	PM10	NO		NO2			03			co			
			kont.	grav.												
	μg	/m³	μg/m³	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
So 01.	2	4		36	74	45	67	76						1.1	1.1	1.3
02.	3	6		57	299	74	119	133						1.3	2.0	2.1
03.	3	5		58	211	67	121	131						1.3	1.6	1.7
04.	2	4		28	197	54	103	105						1.3	1.3	1.3
05.	3	6		28	469	95	155	172						1.8	2.3	2.5
06.	2	4		25	243	70	108	125						1.6	1.7	2.0
07.	1	3		16	86	38	61	68						1.2	0.9	0.9
So 08.	1	2		17	55	35	70	78						0.6	0.8	1.0
09.	1	3		16	143	50	101	106						0.6	0.9	0.9
10.	1	4		33	175	50	105	113						0.6	0.9	1.0
11.	1	3		16	126	39	67	77						0.6	0.7	0.8
12.	1	5		14	162	35	92	102						0.6	0.8	0.8
13.	1	3		18	168	46	91	94						0.8	1.2	1.3
14.	1	2		19	63	40	67	72						0.6	0.7	0.7
So 15.	1	2		17	47	31	44	48						0.6	0.7	0.8
16.	1	3		21	209	47	85	108						0.6	0.8	1.0
17.	2	5		28	238	51	101	107						0.7	1.0	1.1
18.	1	2		14	70	29	58	59						0.7	0.5	0.6
19.	1	3		16	138	43	92	96						0.6	0.9	1.0
20.	1	3		15	96	37	66	71						0.6	0.7	0.8
21.	1	2		14	61	33	52	57						0.6	0.9	1.0
So 22.	1	2		13	33	23	36	37						0.6	0.6	0.7
23.	1	5		18	210	46	103	118						0.6	1.1	1.4
24.	1	2		10	84	31	64	75						0.6	0.7	0.7
25.	1	2		12	89	34	55	63						0.6	0.7	0.8
26.	1	2		16	107	41	88	92						0.7	0.8	0.8
27.	1	3		23	126	37	71	76						0.6	0.9	0.9
28.	2	3		22	93	41	70	75						0.8	1.1	1.3
So 29.	1	2		11	102	36	67	79						0.8	1.1	1.1
30.	2	4		18	296	63	139	150						1.3	2.0	2.7
31.	1	4		24	265	32	72	85						0.8	1.2	1.5

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage	31		31	31	31		
Verfügbarkeit	98%		100%	98%	98%		99%
Max.HMW	6			469	172		
Max.01-M					155		2.3
Max.3-MW	5				150		
Max.08-M							
Max.8-MW							1.8
Max.TMW	3		58	187	95		
97,5% Perz.	4						
MMW	1	-	22	48	45	-	0.6
Gl.JMW					44		

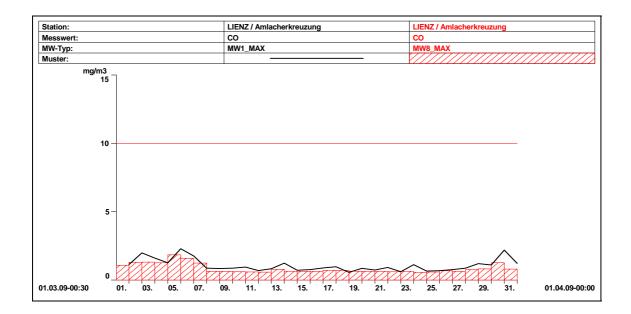
Messstelle: LIENZ / Amlacherkreuzung

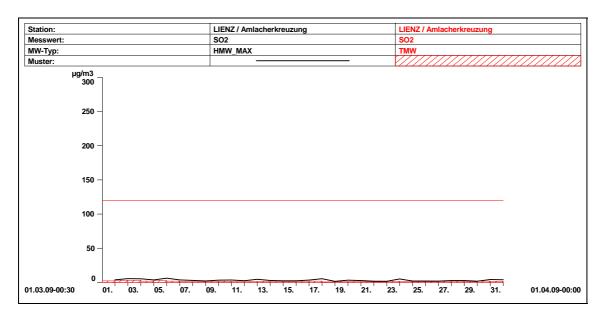
Anzahl der Tage mit Grenzwertüberschreitungen

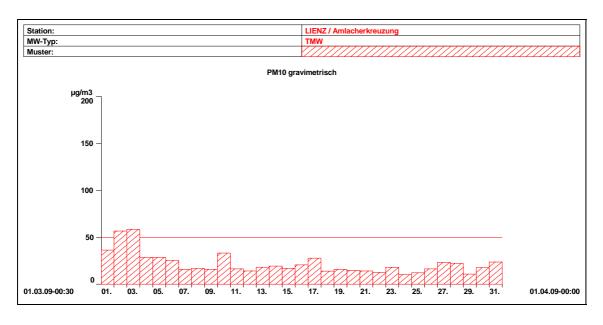
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte	0			0		
Grenzwerte menschliche Gesundheit	0	2		0		0
Zielwerte menschliche Gesundheit		2		1		
Zielwerte Ökosysteme, Vegetation	0			n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen	0/0					
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				18		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				1		
	_					

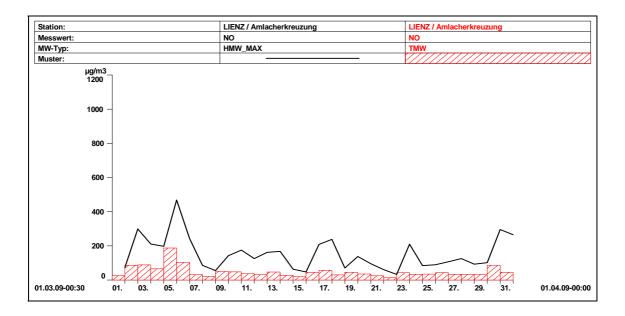
 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)

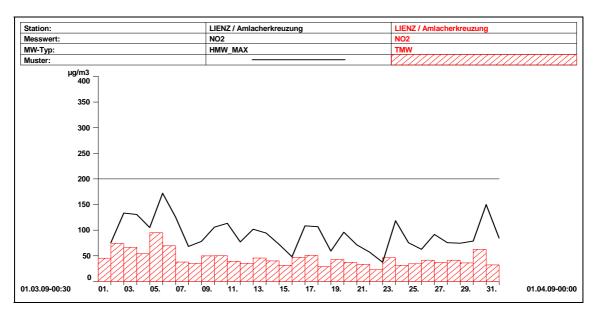
ÖAW: SO2-Kriterium für Siedlungsgebiete


VDI-RL 2310: NO-Grenzwert


0

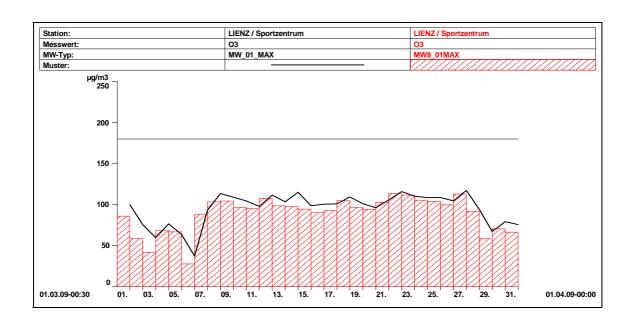

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen


n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.


¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

 $Messstelle: \quad LIENZ \, / \, Sportzentrum$

	SC)2	PM10	PM10	NO		NO2				03				CO	
			kont.	grav.												
	μg/	m³	$\mu g/m^3$	$\mu \text{g/m}^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
So 01.									86	86	100	100	104			
02.									58	61	75	75	77			
03.									42	42	60	60	63			
04.									68	70	77	83	86			
05.									67	68	63	67	64			
06.									28	28	37	37	39			
07.									88	88	93	103	108			
So 08.									103	105	113	113	114			
09.									104	104	109	109	109			
10.									96	97	104	104	105			
11.									95	95	98	98	98			
12.									108	108	112	112	112			
13.									98	100	103	103	103			
14.									97	98	115	115	116			
So 15.									94	94	99	100	100			
16.									90	92	100	100	101			
17.									93	93	101	101	103			
18.									105	105	109	109	110			
19.									97	98	101	101	101			
20.									94	94	96	96	97			
21.									103	103	106	108	109			
So 22.									113	113	116	116	117			
23.									112	112	110	111	111			
24.									105	105	109	109	110			
25.									104	104	109	109	109			
26.									100	100	105	105	105			
27.									113	113	117	117	117			
28.									92	94	94	95	96			
So 29.									58	59	67	67	68			
30.									70	70	79	79	80			
31.									66	66	76	76	77			


	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						117	
Max.01-M						117	
Max.3-MW							
Max.08-M							
Max.8-MW						113	
Max.TMW						101	
97,5% Perz.							
MMW						66	
Gl.JMW							

Messstelle: LIENZ / Sportzentrum

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VD	I Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					28	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					10	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Beurteilungsunterlagen:

A. Inländische Grenzwerte

I. Immissionsschutzgesetz-Luft (BGBl. I Nr. 115/1997 i.d.g.F.)

a) Schutz der menschlichen Gesundheit

Gr	Grenzwerte in μg/m³ (ausgenommen CO: angegeben in mg/m³)							
Luftschadstoff	HMW	MW3	MW8	TMW	JMW			
Schwefeldioxid	200 *)			120				
Kohlenmonoxid			10					
Stickstoffdioxid	200				30 **)			
PM_{10}				50 ***)	40			
	Aları	nwerte in μg/m³						
Schwefeldioxid		500						
Stickstoffdioxid		400						
	Ziel	werte in μg/m³						
Stickstoffdioxid				80				
PM_{10}				50	20			

b) Schutz der Ökosysteme und der Vegetation (BGBl. II Nr. 298/2001 i.d.g.F.)

Grenzwerte in μg/m³							
Luftschadstoff	HMW	MW3	MW8	TMW	JMW		
Schwefeldioxid					201)		
Stickstoffoxide					30		
	Ziel	werte in μg/m³					
Schwefeldioxid				50			
Stickstoffdioxid				80			
1) für das Kalenderjahr und Winterhalbjahr (1.0	Oktober bis 31.März)		•			

II. Ozongesetz 1992: (BGBl. I Nr. 210/1992 i.d.g.F.)

Informationsschwelle	180 μg/m³ als Einstundenmittelwert (stündlich gleitend)					
Alarmschwelle	240 μg/m³ als Einstundenmittelwert (stündlich gleitend)					
Zielwert 120 µg/m³ als Achtstundenmittelwert *)						
*) Dieser Wert darf im Mittel über drei Jahre an nicht mehr als 25 Tagen pro Kalenderjahr überschritten werden und gilt ab 2010.						

 ^{*)} Drei Halbstundenmittelwerte pro Tag, jedoch maximal 48 Halbstundenmittelwerte pro Kalenderjahr bis zu einer Konzentration von 350 μg/m³ gelten nicht als Überschreitung.
 **) Der Immissionsgrenzwert von 30 μg/m³ ist ab 1. Jänner 2012 einzuhalten. Die Toleranzmarge beträgt 30 μg/m³ bei In-Kraft-Treten dieses Bundesgesetzes und wird am 1. Jänner jedes Jahres bis 1. Jänner 2005 um 5 μg/m³ verringert. Die Toleranzmarge von 10 μg/m³ gilt gleich bleibend von 1. Jänner 2005 bis 31. Dezember 2009. Die Toleranzmarge von 5 $\mu g/m^3$ gilt gleich bleibend von 1. Jänner 2010 bis 31. Dezember 2011.

^{***)} Pro Kalenderjahr ist die folgende Zahl von Überschreitungen zulässig: ab In-Kraft-Treten des Gesetzes bis 2004: 35; von 2005 bis 2009: 30; ab 2010: 25.

III. Zweite Verordnung gegen forstschädliche Luftverunreinigungen: (BGBl. Nr. 199/1984 i.d.g.F.)

Grenzwerte für Schwefeldioxid (SO₂):

§ 4 (1) Als Höchstanteile im Sinne des § 48 lit.b des Forstgesetzes 1975, die nach dem Stand der wissenschaftlichen Erkenntnisse und der Erfahrung noch nicht zu einer der Schadenanfälligkeit des Bewuchses entsprechenden Gefährdung der Waldkultur führen (wirkungsbezogene Immissionsgrenzwerte, gemessen an der Empfindlichkeit der Fichte), werden bei Messungen in der Luft festgesetzt:

Schwefeldioxid (SO ₂)							
	April - Oktober	November - März					
97,5 Perzentil für den Halbstundenmittelwert	0,07 mg/m³	0,15 mg/m³					
(HMW) in den Monaten							
Die zulässige Überschreitung des Grenzwertes, die sich aus der Perzentilregelung ergibt, darf höchstens 100% des Grenzwertes betragen.							
Tagesmittelwert (TMW)	0.05 mg/m^3	0.10 mg/m^3					
Halbstundenmittelwert (HMW)	0,14 mg/m³	0,30 mg/m³					

IV. Empfehlungen der Österreichischen Akademie der Wissenschaften, Kommission für die Reinhaltung der Luft:

Nov. 1998: Luftqualitätskriterien Stickstoffdioxid (NO ₂)				August 1989: Luftqualitätskriterien Ozon (O ₃)				
Wirkungsbezogene Immissionsgrenzkonzentrationen für NO_2 in mg/m^3			Wirkungsbezogene Immissionsgrenzkonzentrationen für O_3 in $\mathrm{mg/m^3}$					
	HMW	TMW	JMW		HMW	1MW	8MW	Vegetations- periode *)
zum Schutz des Menschen	0,200	0,080	0,030	zum Schutz des Menschen	0,120	-	0,100	-
zum Schutz der Vegetation	0,200	0,080	0,030	zum Schutz der Vegetation (einschließlich empfindlicher Pflanzenarten)	0,300	0,150	0,060	0,060
Zielvorstellungen zum Schutz der Ökosysteme	0,080	0,040	0,010					
*) als Mittelwert der Siebe	Zeit von 09.00 – 16.00 Uhr MEZ wä	hrend de	r Vegetat	ionsperio	ode			

Die höchstzulässige Konzentration von Schwefeldioxid (SO_2) in der freien Luft beträgt								
	in Erholun	gsgebieten	in allgemeinen Siedlungsgebieten					
		Schwefeldioxid	l in mg/m³ Luft					
	April - Oktober	November – März						
Tagesmittelwert	0,05	0,10	0,20					
Halbstundenmittelwert	0,07	0,15	0,20					
			Die Überschreitung dieses Halbstundenmittelwertes dreimal pro Tag bis höchstens 0,50 mg/m³ gilt nicht als Luftbeeinträchtigung.					

B. Ausländische Grenzwerte, wo keine österreichischen vorhanden sind

V. VDI-Richtlinie 2310:

Grenzwerte für Stickstoffmonoxid (NO)					
Tagesmittelwert	500 μg/m³				
Halbstundenmittelwert	$1000~\mu \mathrm{g/m^3}$				

IG-L Überschreitungen:

PM10 Staub

PM10 kontinuierlich

IG-L Grenzwertüberschreitungen im Zeitraum 01.03.09-00:30 - 01.04.09-00:00
Tagesmittelwerte > 50µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

PM10 gravimetrisch

IG-L Grenzwertüberschreitungen im Zeitraum 01.03.09-00:30 - 01.04.09-00:00 Tagesmittelwerte > 50µg/m3

MESSSTELLE	Datum	WERT[µg/m	3]
LIENZ / Amlacherkreuzung	02.03	.2009	57
LIENZ / Amlacherkreuzung	03.03	.2009	58
Anzahl: 2			

STICKSTOFFDIOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.03.09-00:30 - 01.04.09-00:00 Halbstundenmittelwert > 200µg/m3

MESSSTELLE Datum WERT[μg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Alarmwertüberschreitungen im Zeitraum 01.03.09-00:30 - 01.04.09-00:00 Dreistundenmittelwert > $400 \mu g/m3$

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Zielwertüberschreitungen im Zeitraum 01.03.09-00:30 - 01.04.09-00:00 Tagesmittelwert > 80 /m3

MESSSTELLE	Datum WERT[/m3]	
VOMP / Raststätte A12 VOMP / Raststätte A12	02.03.2009 03.03.2009	104 81	_
VOMP / Raststatte A12	05.03.2009	85	
VOMP / Raststätte A12	06.03.2009	91	
VOMP / Raststätte A12	07.03.2009	92	
VOMP / Raststätte A12	09.03.2009	92	
VOMP / Raststätte A12	11.03.2009	99	
VOMP / Raststätte A12	13.03.2009	100	
VOMP / Raststätte A12	25.03.2009	87	
VOMP / Raststätte A12	26.03.2009	92	
Anzahl: 10			
KUNDL / A12	05.03.2009	85	
KUNDL / A12	07.03.2009	81	
KUNDL / A12	13.03.2009	91	
Anzahl: 3			
LIENZ / Amlacherkreuzung Anzahl: 1	05.03.2009	95	

SCHWEFELDIOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.03.09-00:30 - 01.04.09-00:00
Halbstundenmittelwert > 200µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Alarmwertüberschreitungen im Zeitraum 01.03.09-00:30 - 01.04.09-00:00
Dreistundenmittelwert > 500µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

ÖKOSYSTEME / VEGETATION Zielwertüberschreitungen im Zeitraum 01.03.09-00:30 - 01.04.09-00:00

Tagesmittelwert > 50µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Grenzwertüberschreitungen im Zeitraum 01.03.09-00:30 - 01.04.09-00:00 Tagesmittelwert > $120\mu g/m3$

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

KOHLENMONOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.03.09-00:30 - 01.04.09-00:00
Achtstundenmittelwert > 10mg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

OZON

Überschreitungen der Alarmschwelle lt. Ozongesetz im Zeitraum 01.03.09-00:30 - 01.04.09-00:00

Einstundenmittelwert > 240µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

Überschreitungen der Informationsschwelle lt. Ozongesetz im Zeitraum 01.03.09-00:30 - 01.04.09-00:00

Einstundenmittelwert > 180µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

Zielwertüberschreitungen lt. Ozongesetz im Zeitraum 01.03.09-00:30 - 01.04.09-00:00

Achtstundenmittelwert > 120µg/m3

MESSSTELLE Datum WERT[µg/m3]

ZILLERTALER ALPEN 14.03.2009-24:00 129

Anzahl: 1